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Abstract

Data privacy constraints hinder deep learning in medical imaging by preventing1

data centralization. We introduce AlzFed-XAI, a federated learning framework for2

Alzheimer’s diagnosis from decentralized MRIs. AlzFed-XAI trains a lightweight3

CNN (FedNet, 378K parameters) across data silos without exposing raw patient4

information. On the imbalanced OASIS-1 dataset, our framework achieves 99.73%5

accuracy and a 0.9970 macro F1-score, demonstrating a negligible performance6

drop compared to a centralized baseline. To foster clinical trust, Grad-CAM7

visualizations confirm the model learns neuroanatomically relevant features. Our8

work presents a robust, privacy-by-design solution, demonstrating a viable pathway9

for building high-performance, interpretable AI for critical healthcare diagnostics.10

1 Introduction11

The efficacy of deep learning in diagnosing Alzheimer’s Disease (AD) from medical imaging is12

well-established, with models identifying pathological indicators from MRI scans with remarkable13

progress [1, 2]. However, model performance is fundamentally dependent on large, diverse datasets, a14

requirement severely hampered by stringent privacy constraints governing patient health information15

[3]. Regulations such as HIPAA and GDPR render data centralization for training practically16

infeasible, creating a critical bottleneck for developing robust clinical AI [4].17

We leverage Federated Learning (FL), a decentralized training paradigm that enables multiple parties18

to build a shared model without exchanging raw data [5]. In this work, we introduce AlzFed-XAI, a19

novel framework for the privacy-preserving diagnosis of AD. AlzFed-XAI orchestrates the training20

of a custom, lightweight CNN, FedNet, across distributed clients, aggregating only model parameter21

updates to learn a powerful global model. Furthermore, to address the "black-box" nature of deep22

learning and foster clinical trust, our framework incorporates Gradient-weighted Class Activation23

Mapping (Grad-CAM) for model interpretability. We demonstrate that our federated approach24

achieves performance nearly equivalent to a centralized model, proving that robust diagnostic accuracy25

need not be sacrificed for patient privacy.26

2 Related Works27

Federated Learning (FL) has emerged as a critical paradigm for Alzheimer’s Disease (AD) diagnostics,28

enabling multi-institutional collaboration while respecting data privacy. Recent works have focused29

on enhancing this approach’s security and robustness. For instance, frameworks like MetisFL achieve30

performance comparable to centralized training by leveraging advanced security mechanisms like31

Fully Homomorphic Encryption (FHE) [6]. Similarly, others have employed Secure Aggregation32

(SecAgg) to provide strong privacy guarantees against heterogeneous data distributions [7].33
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Figure 1: Overview of the AlzFed-XAI methodology.

Other research aims to address clinical data complexity. Several works propose multi-modal FL34

systems integrating diverse data types like MRI and blood tests to improve diagnostic accuracy,35

reporting accuracies up to 99% [8, 9]. Others tackle data imbalance by integrating Generative36

Adversarial Networks (GANs) within a Split Federated Learning (SFL) architecture [10]. While these37

approaches advance specific aspects like cryptography or data augmentation, our work distinguishes38

itself by presenting a holistic framework. AlzFed-XAI prioritizes the synergy of three key elements:39

(1) high-fidelity performance with an efficient model, (2) inherent privacy via the standard FL40

protocol, and (3) clinical trustworthiness through integrated interpretability.41

3 Methodology42

We present AlzFed-XAI, a federated framework for privacy-preserving AD classification from43

distributed MRI data (Fig. 1). It employs an efficient client-side model, FedNet, with a decentralized44

optimization protocol based on Federated Averaging. The global model is learned by aggregating45

local updates, ensuring raw data never leaves the client environment.46

3.1 Dataset and Federated Data Protocol47

Our study uses the OASIS-1 MRI dataset [11], which presents a significant class imbalance that48

complicates classification; the full class distribution is in the Appendix (Figure 3). Let the global49

dataset be D, with pairs (s, y) of 3D MRI scans and diagnostic labels. We define a transformation T50

that processes each scan s into a set of 2D axial slices, resized to 224× 224 and normalized, yielding51

our input space X ⊂ R3×224×224. To simulate a decentralized environment, the global training data52

is partitioned among N = 5 clients into disjoint subsets, D =
⋃N

k=1Dk, such that Dk ∩ Dj = ∅ for53

k ̸= j. Each client k has exclusive access to its local partition Dk, forming the basis of our privacy54

protocol.55

3.2 FedNet: Lightweight Client Architecture56

For client-side computation, we designed FedNet, a lightweight convolutional neural network. The57

architecture is built upon the Mobile Inverted Bottleneck Convolution (MBConv) block, a core58

component of EfficientNet [12], which leverages depthwise separable convolutions and Squeeze-59

and-Excitation (SE) modules [13] for optimal efficiency. The architecture comprises an initial60
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stem convolution, followed by a sequence of seven MBConv blocks, and a final classification head61

composed of a 1×1 convolution, global average pooling, dropout, and a linear classifier. This efficient62

design results in a compact model with only 378,780 total parameters, making it ideally suited for63

deployment in resource-constrained federated settings. We represent the model as a parameterized64

function f(·; θ), which maps an input x ∈ X to a probability distribution over the classes in Y .65

3.3 AlzFed-XAI Optimization Protocol66

The core of our framework is a federated optimization protocol aimed at minimizing a global objective67

function F (θ) without data centralization. The global objective is the weighted average of the local68

loss functions Lk(θ) for each client k:69

θ∗ = argmin
θ

F (θ) :=

N∑
k=1

|Dk|
|Dtrain|

Lk(θ) (1)

where the local objective for client k is defined as:70

Lk(θ) =
1

|Dk|
∑

(xi,yi)∈Dk

ℓ(f(xi; θ), yi) (2)

Here, ℓ is the weighted cross-entropy loss function. The training proceeds over a series of communi-71

cation rounds. In each round t, the following three steps are executed:72

1. Distribution: The central server broadcasts the current global model parameters θtg to all N73

clients.74

2. Local Update: Each client k sets its local model parameters to the global parameters,75

θtk ← θtg. It then performs E local epochs of training using its private data Dk and the76

AdamW optimizer [14] to compute its updated parameters, θt+1
k .77

3. Aggregation: All clients transmit their updated parameters θt+1
k to the server. The server78

then aggregates these to form the new global model by computing their unweighted average:79

θt+1
g ← 1

N

N∑
k=1

θt+1
k (3)

This iterative procedure enables collaborative training while strictly preserving data privacy.80

4 Experiments81

This section outlines the experimental setup, reports quantitative results of AlzFed-XAI, and analyzes82

its interpretability. We benchmark our federated approach against centralized training to evaluate83

performance.84

4.1 Experimental Setup85

Experiments were conducted in a Kaggle environment with an NVIDIA Tesla P100 GPU (16 GB86

VRAM). For AlzFed-XAI, the global model was trained for 30 communication rounds, with 5 clients87

performing E = 3 local epochs per round. The centralized FedNet baseline was trained for 50 epochs.88

Both paradigms utilized the AdamW optimizer [14] with a learning rate of 1× 10−3, a weight decay89

of 1× 10−4, and a weighted cross-entropy loss to address class imbalance. Given the severe class90

imbalance, we prioritize macro-averaged Precision, Recall, and F1-score. The full implementation91

details for our framework are available in our repository.192

4.2 Results and Discussion93

The quantitative performance of our proposed AlzFed-XAI framework and the centralized FedNet94

baseline is summarized in Table 1. Our AlzFed-XAI framework achieves an outstanding test accuracy95

1https://anonymous.4open.science/r/AlzFed-XAI-MuslimInML/
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Table 1: Performance comparison of FedNet baseline and proposed AlzFed-XAI framework.

Model Test accuracy (%) Precision (macro) Recall (macro) F1-score (macro)

FedNet 99.9364 0.9980 0.9997 0.9988
AlzFed-XAI 99.7281 0.9959 0.9982 0.9970

of 99.7281% and a macro F1-score of 0.9970. This demonstrates the model’s exceptional capability96

in distinguishing between dementia stages within a privacy-preserving environment. The training97

dynamics (Appendix, Figure 4) illustrate stable global convergence and effective local learning.98

To quantify the performance trade-off, we compare AlzFed-XAI to the centralized FedNet model,99

which achieves a marginally higher accuracy of 99.9364% and F1-score of 0.9988. The performance100

degradation from federation is minimal (≈0.21% drop in accuracy, ≈0.18% in F1-score). This result101

is highly significant, demonstrating robust, near-centralized performance while providing the critical102

benefit of data privacy. The confusion matrix and ROC curves (Appendix, Figures 5 and 6) further103

corroborate the model’s discriminative power.104

4.3 Model Interpretability105

To ensure our model avoids spurious correlations, we employ Gradient-weighted Class Activation106

Mapping (Grad-CAM) [15] to visualize its decision process. Figure 2 presents a representative107

visualization for a correctly classified ’Mild Dementia’ case. The heatmap highlights activations108

concentrated within the temporal and parietal lobes, corresponding to regions of visible cortical109

atrophy, a key neuropathological hallmark of the disease. This visual evidence provides clinical110

plausibility, suggesting AlzFed-XAI learns neuroanatomically relevant features, thereby enhancing111

trust and transparency in its predictions.112

Figure 2: Grad-CAM visualization for a correctly classified ’Mild Dementia’ patient.

5 Conclusion113

In this work, we introduced AlzFed-XAI, a federated learning framework for the accurate and private114

diagnosis of Alzheimer’s disease. By leveraging a lightweight client-side CNN, our framework115

achieves exceptional performance, reaching 99.73% accuracy with a negligible drop compared116

to a centralized baseline, while Grad-CAM visualizations enhance its clinical trustworthiness by117

confirming it learns neuroanatomically relevant features. We acknowledge our evaluation is currently118

limited to a simulated federation on a single dataset. Despite this, our results strongly underscore the119

potential of federated learning to build robust and interpretable AI for critical healthcare challenges.120

Future work should therefore focus on validating the framework’s scalability and robustness on121

genuinely multi-institutional, non-IID data to pave the way for wider clinical adoption.122
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A Supplemental Figures and Details170

This appendix provides additional visualizations and details to support the findings presented in the171

main paper. This includes the dataset class distribution and a full set of performance graphs for the172

AlzFed-XAI.173

5

http://arxiv.org/abs/1905.11946


A.1 Dataset Distribution174

Figure 3 details the class distribution of the OASIS-1 dataset used in our experiments, highlighting175

the significant imbalance that poses a challenge for model training and evaluation.176

Figure 3: Class distribution of the OASIS-1 dataset. The ’Non Demented’ class constitutes the vast
majority of samples, creating a significant class imbalance challenge.

A.2 Federated Learning Model Performance (AlzFed-XAI)177

This section provides detailed performance visualizations for our proposed AlzFed-XAI framework,178

as referenced in the main text.179

Figure 4: Training dynamics of the AlzFed-XAI framework over 30 communication rounds. Top: The
global model shows stable convergence on the validation set. Bottom: Client-side models demonstrate
consistent and effective local learning.
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Figure 5: Confusion matrix for the AlzFed-XAI model on the test set. The model shows high accuracy
across all classes, including the underrepresented ’Moderate Dementia’ class.

Figure 6: Multi-class ROC curves for the AlzFed-XAI model. The perfect AUC score of 1.000 for all
classes indicates excellent discriminative capability.
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NeurIPS Paper Checklist180

1. Claims181

Question: Do the main claims made in the abstract and introduction accurately reflect the182

paper’s contributions and scope?183

Answer: [Yes]184

Justification: The abstract and introduction claim a high-performance, interpretable, and185

privacy-preserving federated framework. These claims are directly supported by the experi-186

mental results in Section 4, including Table 1 and Figure 2, which validate the performance187

and interpretability.188

2. Limitations189

Question: Does the paper discuss the limitations of the work performed by the authors?190

Answer: [Yes]191

Justification: The Conclusion (Section 5) explicitly discusses the primary limitations of192

our work. We acknowledge that our evaluation is based on a simulated federation from a193

single dataset and suggest that future work should validate the framework’s scalability and194

robustness on genuinely multi-institutional, non-IID data.195

3. Theory assumptions and proofs196

Question: For each theoretical result, does the paper provide the full set of assumptions and197

a complete (and correct) proof?198

Answer: [NA]199

Justification: This is an empirical paper focused on the application and evaluation of a200

federated learning framework. It does not introduce new theoretical results or formal proofs.201

4. Experimental result reproducibility202

Question: Does the paper fully disclose all the information needed to reproduce the main ex-203

perimental results of the paper to the extent that it affects the main claims and/or conclusions204

of the paper (regardless of whether the code and data are provided or not)?205

Answer: [Yes]206

Justification: The paper details the model architecture (Section 3.2), dataset (Section 3.1),207

and key training hyperparameters for both federated and centralized setups (Section 4.1),208

which are sufficient to reproduce the main experimental results.209

5. Open access to data and code210

Question: Does the paper provide open access to the data and code, with sufficient instruc-211

tions to faithfully reproduce the main experimental results, as described in supplemental212

material?213

Answer: [Yes]214

Justification: The OASIS-1 dataset is publicly available. An anonymized version of our215

code is provided for review, and the final code will be released in a public repository upon216

publication.217

6. Experimental setting/details218

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-219

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the220

results?221

Answer: [Yes]222

Justification: Section 4.1 details the experimental environment (GPU, RAM), training223

hyperparameters (learning rate, optimizer, epochs, communication rounds), and evaluation224

metrics, providing a clear basis for understanding the results.225

7. Experiment statistical significance226

Question: Does the paper report error bars suitably and correctly defined or other appropriate227

information about the statistical significance of the experiments?228
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Answer: [No]229

Justification: The paper reports performance metrics from a single experimental run. Error230

bars or measures of statistical significance (e.g., mean and standard deviation over multiple231

runs) are not included.232

8. Experiments compute resources233

Question: For each experiment, does the paper provide sufficient information on the com-234

puter resources (type of compute workers, memory, time of execution) needed to reproduce235

the experiments?236

Answer: [Yes]237

Justification: Section 4.1 explicitly states the computational resources used for the experi-238

ments, including the GPU type (NVIDIA Tesla P100) and VRAM.239

9. Code of ethics240

Question: Does the research conducted in the paper conform, in every respect, with the241

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?242

Answer: [Yes]243

Justification: The research uses a publicly available, de-identified medical dataset and244

proposes a methodology (federated learning) designed to enhance data privacy, aligning245

with the principles of the NeurIPS Code of Ethics.246

10. Broader impacts247

Question: Does the paper discuss both potential positive societal impacts and negative248

societal impacts of the work performed?249

Answer: [Yes]250

Justification: The paper extensively discusses the positive societal impact of enabling251

privacy-preserving medical diagnostics. A discussion of potential negative societal impacts,252

such as model bias or security vulnerabilities, is not included.253

11. Safeguards254

Question: Does the paper describe safeguards that have been put in place for responsible255

release of data or models that have a high risk for misuse (e.g., pretrained language models,256

image generators, or scraped datasets)?257

Answer: [Yes]258

Justification: The core methodology of federated learning is itself a safeguard, designed to259

train models on sensitive medical data without requiring the data to be shared or released.260

12. Licenses for existing assets261

Question: Are the creators or original owners of assets (e.g., code, data, models), used in262

the paper, properly credited and are the license and terms of use explicitly mentioned and263

properly respected?264

Answer: [Yes]265

Justification: The paper properly cites the original publication for the OASIS-1 dataset. The266

specific data license is not explicitly mentioned, but the asset is correctly attributed to its267

creators.268

13. New assets269

Question: Are new assets introduced in the paper well documented and is the documentation270

provided alongside the assets?271

Answer: [Yes]272

Justification: The paper introduces a new model architecture, FedNet, and a new framework,273

AlzFed-XAI. Both are documented with sufficient architectural and procedural detail in274

Section 3.275

14. Crowdsourcing and research with human subjects276
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Question: For crowdsourcing experiments and research with human subjects, does the paper277

include the full text of instructions given to participants and screenshots, if applicable, as278

well as details about compensation (if any)?279

Answer: [NA]280

Justification: This research does not involve crowdsourcing or new research with human281

subjects; it utilizes a pre-existing, publicly available, and de-identified dataset.282

15. Institutional review board (IRB) approvals or equivalent for research with human283

subjects284

Question: Does the paper describe potential risks incurred by study participants, whether285

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)286

approvals (or an equivalent approval/review based on the requirements of your country or287

institution) were obtained?288

Answer: [NA]289

Justification: As the study uses a pre-existing and de-identified public dataset, no new290

Institutional Review Board (IRB) approval was required for this work.291

16. Declaration of LLM usage292

Question: Does the paper describe the usage of LLMs if it is an important, original, or293

non-standard component of the core methods in this research?294

Answer: [NA]295

Justification: An LLM was used for assistance in writing, editing, and formatting the296

manuscript. As per the guidelines, since the LLM did not contribute to the core methodology,297

experimental design, or results analysis, a formal declaration is not required.298
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