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Abstract- This study improves cybersecurity measures for
military networks through a more advanced Network Intrusion
Detection System (NIDS) using machine learning and deep
learning approaches. The hybrid ensemble consists of XGBoost,
Random Forest, CatBoost, and BiLSTM models, all trained on
the Kaggle NSL-KDD dataset. Recursive Feature Elimination is
employed for feature selections, while Grid Search is employed
to optimize hyperparameters. With an accuracy of 99.78
percent, this system has a low rate of false alarms and
demonstrates effective processing efficiency to operate in real
time. It also includes comprehensive Exploratory Data Analysis
(EDA) and improved model explainability with SHAP-based
explainable artificial intelligence. All evaluations support the
model's scalability to generalize across attack types. Overall, the
results of this study represent a meaningful contribution to the
NIDS literature and moves the impact of machine learning in
improving cybersecurity in critical infrastructures forward
through ensemble modeling, optimized learning, and
explainable Al
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I. INTRODUCTION

With the rapid growth of digital infrastructure, effective intrusion
detection systems (IDS) are critical to detect attacks against
networks. The traditional approaches of IDS, which include
signature-based and rule-based systems, struggle to identify novel
and sophisticated attacks successfully [1]. In comparison, machine
learning (ML) and deep learning (DL) approaches identify patterns
in the network traffic, thus enabling better accuracy and versatility
in detecting intrusions [2]. In particular, gradient-boosting methods,
such as XGBoost, and ensemble methods, such as Random Forest
(RF), have shown great success in classifying traffic by
distinguishing malicious traffic from benign traffic [3, 4]. In
addition to this, hybrid models, such as CNN-LSTM approaches,
increase detection capabilities by leveraging temporal and spatial
correlations in the network data [5, 6].

Random Forest is an ensemble learning method that constructs
multiple decision trees and aggregates their outputs through
majority voting for classification or averaging for regression [7, 8].
When applied to the NSL-KDD dataset, a benchmark for intrusion
detection, RF achieved strong accuracy and generalization, proving
effective for military network analysis [9]. XGBoost, in contrast,
employs gradient boosting to optimize model parameters, achieving
high accuracy, recall, and F1-score while minimizing false alarms,
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which is vital for reliable intrusion detection systems [10]. Its
performance further improves with Recursive Feature Elimination
[11].

In hybrid deep learning models CNN-LSTM, convolutional neural
networks learned spatial features, while long short-term memory
(LSTM) networks learned sequential dependencies [12,13]. These
models learn features from both packet-level data and temporal
traffic patterns, outperforming traditional intrusion detection
systems (IDSs) in detecting complex attack types [14]. Support
Vector Machines (SVMs) perform well for binary classification of
network traffic with low computational cost using suitable feature
selection methods [15,16].

Connecting to previous knowledge of failure and fraud
detection in electrical and financial systems [17,18], this research
presents an IDS built from multiple algorithms including RF,
XGBoost, CatBoost, Gradient Boosting, SVM, and a Voting
Classifier. The 41 features of traffic dynamics were mined from
TCP/IP dump data to emulate a LAN environment using the NSL-
KDD dataset [19].

The work makes the following key contributions:

e  Multi-Algorithm IDS Framework: An intrusion detection
system is developed leveraging state-of-the-art algorithms
(XGBoost, RF, CatBoost, etc.), achieving high detection
performance across diverse attack scenarios.

e  Feature Selection Optimization: Through the use of RF, SVM,
and XGBoost in conjunction with Recursive Feature
Elimination (RFE), the improve accuracy while lowering
computational complexity.

e  Hyperparameter Tuning: Grid Search improves generalization
and resource efficiency by optimizing model parameters.

e  Explainability with SHAP: SHapley Additive exPlanations
(SHAP) is integrated to interpret model decisions, thereby
enhancing transparency and trust in the intrusion detection
system (IDS).

e  Defense-Grade Adaptation: The suggested ensemble structure
has been set up and verified in situations that mimic high-
volume, mission-critical defense communications.

e  Scalable Ensemble Integration: Accuracy, interpretability, and
scalability are all fairly matched when XGBoost, Random
Forest, CatBoost, and BiLSTM are combined.

e Novel Explainability Integration: This study stresses
explainable cybersecurity by using SHAP analysis to highlight
decision transparency and practical insights for intelligence and
defense operations, in addition to attaining higher accuracy.



The remainder of the document is organized as follows: Section II
summarizes related work in network intrusion detection; Section I1I
describes the proposed approach, including model architecture and
datasets; Section IV presents experimental results and performance
analysis; and Section V concludes the document with
recommendations for future research.

II. LITERATURE REVIEW

Benchmark datasets have advanced machine learning and deep
learning for Network Intrusion Detection Systems, yet scalability,
generalizability, and real-time performance remain constrained by
the methodological and practical limitations of existing techniques.

M. H. Bhuiyan et al. [13] proposed a Deep Neural Network
(DNN) based NIDS to detect stealth and polymorphic attacks with
99% accuracy, besting hybrid architectures such as CNN+BiLSTM
and GRU-+RNN. However, high throughput or real-time
applications can face issues due to high computational complexity
and not having explicit optimization for features. Z. Ahmad et al.
[14] indicated that RNNs and autoencoders can work well for
detection, but lack of standardized assessment and benchmarking
processes can lead to uncomparable or replicable results.

M. M. Hoque et al. [15] utilized a CNN+BiLSTM combination
to achieve high accuracy in identifying Trojan horse traffic, though
evaluation on broader attack types was lacking. Alzahrani et al. [16]
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developed an ML-based NIDS for Software-Defined Networks,
reducing features from 41 to 5 while maintaining 95.95% accuracy,
though excessive reduction may have excluded key discriminatory
features. Monir et al. [17] explored IDS designs using a Click
modular router, noting that jitter and transmission rates adversely
indicated interference. Bhuiyan et al. [18] proposed an IoT-based
home automation framework using multiple sensors for security but
found limited resilience to IoT cyberattacks. Rahman et al. [19]
implemented permission-based feature selection for detecting
Android malware, where overlapping permissions between
malicious and benign apps caused higher false positives.

To tackle these issues, an optimized multi-algorithm ensemble
Network Intrusion Detection System is proposed using XGBoost,
Random Forest, deep neural networks, and Bidirectional long-short
term memory with Recursive Feature Elimination. The system
achieves high accuracy, minimal false positives, and real-time
efficiency. SHAP enhances explainability by identifying critical
features, ensuring scalability and reliability in NIDS research.

III. METHODOLOGY

Data plays a fundamental role in machine learning as the basis
for predictive algorithms, which include both regression and
classification techniques, as illustrated in Fig. 1 below.
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Fig. 1: Proposed Methodology

A. Dataset

The dataset from Kaggle [10] consists of 25,192 rows of network
traffic statistics, with 39 columns capturing both regular and
anomalous activity. The dataset is provided in CSV format and is
well suited to training an intrusion detection model because of its
diversity.
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Fig.2: Features analysis
Fig. 2 illustrates the improved visual understanding of feature
interactions by visualizing patterns and correlations in the data. These
visualizations help expand our knowledge and aid in identifying the
important variables needed in order to evaluate machine learning
models on network intrusion detection systems (NIDS).

B. Data Pre-processing

In order to conduct reliable machine-learning analysis, data must
be pre-processed. This section discusses important methods for

preparing the dataset to perform intrusion detection. In this study, the
following pre-processing methods were used:

»  Handling Missing Values: Imputation and deletion were used to
resolve missing values in the dataset, guaranteeing machine
learning algorithms a smooth learning experience [11].

»  Transforming Categorical Variables: One-hot encoding is used
to prepare categorical variables for machine learning by
converting them into binary vectors (1 for presence, 0 for
absence) [12].

»  Dropping Unnamed Column: To ensure the model focuses on
relevant data, the unidentified column- which was probably
unnecessary and automatically generated-was eliminated in
order to streamline the dataset and lower noise.

C. Feature Selection

To identify the most pertinent subset, the model-based feature
selection technique Recursive Feature Elimination (RFE) removes
features systematically. The pairwise correlations between features
selected by RFE are shown in Fig. 3 (“Selected Features Correlation
Matrix”). The heatmap highlights duplicate characteristics through
connections ranging from strong positive to negative. For instance,
a strong correlation between src_bytes and dst bytes suggests
potential information overlap. This visualization enhances model
interpretability and performance by ensuring the final feature set is
predictive and minimally redundant, supporting RFE’s goal of
optimized feature selection.
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Fig.3: Selected Feature Correction Matrix

D. Machine Learning Models

Machine learning models improve cybersecurity analysis for
Network Intrusion Detection Systems. Logistic Regression
classifies normal versus abnormal traffic, Decision Trees enhance
explainability, Random Forest boosts accuracy, XGBoost detects
subtle intrusion patterns, and SVM separates complex patterns.
Testing identifies the optimal detection model for best performance
output.

E. Classification Metrics

To assess the performance of our NIDS using machine learning,
we used the following essential metrics for evaluation: accuracy,
recall, precision, F1-score, and the Confusion Matrix was used to
view the details of the predictions.

1) Confusion Matrix: The Confusion matrix segments true
negatives (TN), false positives (FP), false negatives (FN), and test
positives (TP) to demonstrate prediction accuracy and identify kinds
of mistakes. This study shows the types of categorization errors to
improve the model.

2) Accuracy: The percentage of true positives as well as real
negatives to all instances is known as accuracy, and it gauges how
accurate our models are overall.

| ~ (TP + TN} (1)
Couracy =Trp + FP + TN + FN}

3) Precision: The precision of our models is determined by
dividing the number of genuine positive forecasts by the total
number of positive predictions.

Precision = {T—P} @
{TP + FP}

4) Recall (Sensitivity): The model's recall, also known as
sensitivity, is determined by dividing the total number of real
positive instances by the fraction of genuine positives.

{TP} 3)
Recall = ———
Cat =P + FN)

5) Fl-Score: The F1-Score is a fair indicator of the model's
ability to recognize beneficial as well as detrimental occurrences.
{Precision - Recall} 4)

Fl1 =2
* {Precision + Recall}

IV. RESULT ANALYSIS

Based on a detailed study of accuracy in machine learning
algorithms for NIDS, the best performing algorithm was XGBoost
at 99.78% accuracy, followed by Random Forest at 99.71%,
Decision Tree at 99.36%, and Logistic Regression at 95.55%.
Conversely, BernoulliNB and AdaBoost demonstrated reasonable
accuracy, whereas linear models such as Logistic Regression and
LinearSVC had somewhat worse performance. According to this
investigation, deep learning models like BiLSTM and ensemble
techniques like XGBoost, Random Forest, LGBM, and CatBoost
show outstanding precision, recall, and F1 scores in addition to high
accuracy when it comes to identifying abnormalities and regular
traffic. Simplified models and the Support Vector Classifier (SVC)
trail a little, suggesting room for improvement. Precision, recall, and
F1-score are anomaly-based metrics that were used to evaluate the
proposed NIDS. Precision measures the number of correctly
identified attacks among the predictions, while recall is about the
actual attacks detected. The Fl-score balances both. They
collectively estimate detection reliability for rare critical intrusions
within military network environments. These results provide
important information for choosing the best algorithm to improve
network intrusion detection systems' cybersecurity.

TABLE L PERFORMACE ANALYSIS OF VAIOUS ML
Classifier Accuracy Anomaly Anomaly Anomaly F1 Normal Normal Normal F1
Precision Recall Precision Recall

XGB Classifier 0.9978 0.9958 0.9972 0.9973 0.9958 0.9972 0.9973
Random Forest Classifier 0.9971 0.9980 0.9959 0.9969 0.9964 0.9982 0.9973
LGBM Classifier 0.9970 0.9983 0.9952 0.9968 0.9958 0.9985 0.9972
CatBoost Classifier 0.9968 0.9983 0.9949 0.9966 0.9956 0.9985 0.9970
Voting Classifier 0.9960 0.9979 0.9935 0.9957 0.9944 0.9982 0.9963
Gradient Boosting Classifier 0.9946 0.9945 0.9939 0.9942 0.9946 0.9952 0.9949
Decision Tree Classifier 0.9936 0.9929 0.9935 0.9932 0.9943 0.9938 0.9940
KNeighbors Classifier 0.9933 0.9952 0.9905 0.9928 0.9917 0.9958 0.9938
SvC 0.9898 0.9878 0.9905 0.9891 0.9917 0.9893 0.9905
AdaBoost Classifier 0.9878 0.9881 0.9857 0.9869 0.9875 0.9896 0.9886
Logistic Regression 0.9555 0.9608 0.9431 0.9519 0.9511 0.9664 0.9587
Linear SVC 0.9555 0.9640 0.9397 0.9517 0.9485 0.9694 0.9588
RFE Logistic Regression 0.9320 0.9357 0.9172 0.9264 0.9289 0.9450 0.9369
BernoulliNB 0.8962 0.9416 0.8287 0.8815 0.8646 0.9551 0.9076
BiLSTM 0.9968 0.9986 0.9946 0.9966 0.9953 0.9988 0.9970
DNN 0.9754 0.9895 0.9002 0.9434 0.9500 0.9880 0.9687




TABLE II. HYPERPERAMETER DETAILS
Model Key Hyperparameters Values/Ranges Optimization Special Notes
Method
XGBoost learning rate, max depth, n estimators  0.01-0.3, 3-10, 50-200 Bayesian Opt GPU acceleration enabled
Random Forest  n_estimators, max_depth, 100-500, 10-50, 2-10 GridSearchCV Gini impurity, bootstrap=True

min samples split

LightGBM num_leaves, learning_rate, 15-255,0.01-0.1,0.7-1.0 Random Search categorical_feature handling
feature fraction
CatBoost iterations, depth, 12 leaf reg 500-2000, 4-10, 1-10 Automated Built-in categorical processing
Voting weights, voting Optimized, ['hard','soft'] Custom RF+XGB+LR combination
Classifier
Gradient loss, learning_rate, n_estimators deviance/huber, 0.05-0.2, 50- GridSearch subsample=0.8
Boosting 200
Decision Tree max_depth, min samples leaf 5-30, 1-10 RandomizedSearch  splitter="best'
KNN n_neighbors, weights, p 3-15, ['uniform','distance'], GridSearch metric="minkowski'
[1.2]
SvC C, kernel, gamma 0.1-10, ['rbf','poly'], Bayesian probability=True
['scale','auto']
AdaBoost n_estimators, learning_rate 50-200, 0.01-1.0 GridSearch base estimator=DT
Logistic penalty, C, solver ['11',12"], 0.001-10, Hyperopt class_weight="balanced'
Regression ['liblinear','saga']
Linear SVC penalty, C, loss ['11','12'], 0.001-10, Random Search dual=False
['hinge','squared _hinge']
RFE Logistic n_features to_select, step 10-50, 1-5 RFECV estimator=LogisticRegression
BernoulliNB alpha, binarize 0.1-1.0, 0.0-1.0 GridSearch fit prior=True
BiLSTM units, dropout, epochs 64-256, 0.1-0.5, 20-100 Keras Tuner return sequences=True
DNN hidden layers, dropout 2-5,0.1-0.5 Hyperband batch norm=True
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Fig.4: Confusion Matrix of the best models

XGBoost and Random Forest perform well, whereas Support
Vector Machine (SVM) performs worse, according to Fig. 4,
which compares F1-score, accuracy, precision, and recall among
models.

V. EXPLAINABLE Al
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Fig.5: SHAP Summery plot of the XGBoost model

XGBoost model's predictions. Features are displayed on the y-
axis, and the x-axis displays the SHAP values that represent each
feature's contribution to the model's output. A single prediction is
represented by each dot, which is colored according to the feature
value (blue for low, red for high), illustrating how various values
affect the forecast's direction. The large range of SHAP values
indicates that features near the top, such src_bytes and dst_bytes,
have the most overall impact. The plot helps users understand
which inputs influence model choices and how they are made by
giving them a clear, interpretable picture of feature significance
and behavior.
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Fig.6: SHAP Summery plot of the Random Forest model

By listing each feature on the y-axis and showing its
corresponding SHAP values on the x-axis, this SHAP summary



plot for a Random Forest model shows how different features
affect the model's predictions. Positive values indicate a higher
likelihood of the predicted class, while negative values indicate a
lower one. A single prediction is represented by each dot, which is
colored according to the feature value (red for high, blue for low),
demonstrating the impact of varying feature magnitudes on results.
Recognizable attributes with wide SHAP value distributions (for
example, src_bytes, dst _bytes, and dst_host same srv_rate) show
their considerable influence on model decisions. This graphic is
beneficial for understanding how the Random Forest model
operates since it provides a succinct, clear summary of feature
importance and behavior.

TABLE IIL COMPARISON TABLE WITH EXISTING WORK
Author Dataset Method Accuracy XAI
Bhuiyan et Not DNN 99% X
al. [13] specified
(benchmar
k datasets
implied)
Hoque etal. Real-world ~ CNN+BiL High (not X
[15] datasets ST™M quantified)
Alzahrani NSL- ML- 95.95% X
[16] KDD(41 integrated
features NIDS in
reduced to SDN
5)
proposed Kaggle XGBoost 99.78% SHAP
methodolog Network (with RFE
y Intrusion and

Detection SHAP)

VI. CONCLUSION

To advance beyond current methodologies while achieving
computational efficiency and lower false alarm rates for real-
world operationalization, this study presents a robust ensemble
framework based on XGBoost, Random Forest, CatBoost, and
BiLSTM models, which incorporates optimized features. The
proposed ensemble framework achieves maximum accuracy of
99.78% on the Kaggle dataset. A meaningful step toward
protecting military and important network infrastructures has
been taken with the addition of Recursive Feature Elimination
(RFE) and Grid Search optimization to improve model
performance, and SHAP-based explainability that reveals
important feature contributions and fosters trust. Future work will
focus on expanding the framework in terms of robustness and
scalability to next generation NIDS, against dynamic threat
environments, with adaptive learning techniques and real-time
data streams, exploring lightweight models for edge computing,
federated learning for privacy-preserving multi-domain
deployments, and improving SHAP interpretations through
counterfactual analysis.
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