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Abstract- This study improves cybersecurity measures for 

military networks through a more advanced Network Intrusion 

Detection System (NIDS) using machine learning and deep 

learning approaches. The hybrid ensemble consists of XGBoost, 

Random Forest, CatBoost, and BiLSTM models, all trained on 

the Kaggle NSL-KDD dataset. Recursive Feature Elimination is 

employed for feature selections, while Grid Search is employed 

to optimize hyperparameters. With an accuracy of 99.78 

percent, this system has a low rate of false alarms and 

demonstrates effective processing efficiency to operate in real 

time. It also includes comprehensive Exploratory Data Analysis 

(EDA) and improved model explainability with SHAP-based 

explainable artificial intelligence. All evaluations support the 

model's scalability to generalize across attack types. Overall, the 

results of this study represent a meaningful contribution to the 

NIDS literature and moves the impact of machine learning in 

improving cybersecurity in critical infrastructures forward 

through ensemble modeling, optimized learning, and 

explainable AI. 

Keywords- Network Intrusion Detection System, Machine 

Learning, Deep Learning, XGBoost, SHAP, Feature Selection, 

Cybersecurity, Real-Time Detection. 

I. INTRODUCTION  

     With the rapid growth of digital infrastructure, effective intrusion 

detection systems (IDS) are critical to detect attacks against 

networks. The traditional approaches of IDS, which include 

signature-based and rule-based systems, struggle to identify novel 

and sophisticated attacks successfully [1]. In comparison, machine 

learning (ML) and deep learning (DL) approaches identify patterns 

in the network traffic, thus enabling better accuracy and versatility 

in detecting intrusions [2]. In particular, gradient-boosting methods, 

such as XGBoost, and ensemble methods, such as Random Forest 

(RF), have shown great success in classifying traffic by 

distinguishing malicious traffic from benign traffic [3, 4]. In 

addition to this, hybrid models, such as CNN-LSTM approaches, 

increase detection capabilities by leveraging temporal and spatial 

correlations in the network data [5, 6]. 

       Random Forest is an ensemble learning method that constructs 

multiple decision trees and aggregates their outputs through 

majority voting for classification or averaging for regression [7, 8]. 

When applied to the NSL-KDD dataset, a benchmark for intrusion 

detection, RF achieved strong accuracy and generalization, proving 

effective for military network analysis [9]. XGBoost, in contrast, 

employs gradient boosting to optimize model parameters, achieving 

high accuracy, recall, and F1-score while minimizing false alarms, 

which is vital for reliable intrusion detection systems [10]. Its 

performance further improves with Recursive Feature Elimination 

[11]. 

In hybrid deep learning models CNN-LSTM, convolutional neural 

networks learned spatial features, while long short-term memory 

(LSTM) networks learned sequential dependencies [12,13]. These 

models learn features from both packet-level data and temporal 

traffic patterns, outperforming traditional intrusion detection 

systems (IDSs) in detecting complex attack types [14]. Support 

Vector Machines (SVMs) perform well for binary classification of 

network traffic with low computational cost using suitable feature 

selection methods [15,16]. 
       Connecting to previous knowledge of failure and fraud 

detection in electrical and financial systems [17,18], this research 

presents an IDS built from multiple algorithms including RF, 

XGBoost, CatBoost, Gradient Boosting, SVM, and a Voting 

Classifier. The 41 features of traffic dynamics were mined from 

TCP/IP dump data to emulate a LAN environment using the NSL-

KDD dataset [19]. 

The work makes the following key contributions: 

• Multi-Algorithm IDS Framework: An intrusion detection 

system is developed leveraging state-of-the-art algorithms 

(XGBoost, RF, CatBoost, etc.), achieving high detection 

performance across diverse attack scenarios. 

• Feature Selection Optimization: Through the use of RF, SVM, 

and XGBoost in conjunction with Recursive Feature 

Elimination (RFE), the improve accuracy while lowering 

computational complexity. 

• Hyperparameter Tuning: Grid Search improves generalization 

and resource efficiency by optimizing model parameters. 

• Explainability with SHAP: SHapley Additive exPlanations 

(SHAP) is integrated to interpret model decisions, thereby 

enhancing transparency and trust in the intrusion detection 

system (IDS). 

• Defense-Grade Adaptation: The suggested ensemble structure 

has been set up and verified in situations that mimic high-

volume, mission-critical defense communications. 

• Scalable Ensemble Integration: Accuracy, interpretability, and 

scalability are all fairly matched when XGBoost, Random 

Forest, CatBoost, and BiLSTM are combined. 

• Novel Explainability Integration: This study stresses 

explainable cybersecurity by using SHAP analysis to highlight 

decision transparency and practical insights for intelligence and 

defense operations, in addition to attaining higher accuracy. 

 



 

The remainder of the document is organized as follows: Section II 

summarizes related work in network intrusion detection; Section III 

describes the proposed approach, including model architecture and 

datasets; Section IV presents experimental results and performance 

analysis; and Section V concludes the document with 

recommendations for future research. 

II. LITERATURE REVIEW  

      Benchmark datasets have advanced machine learning and deep 

learning for Network Intrusion Detection Systems, yet scalability, 

generalizability, and real-time performance remain constrained by 

the methodological and practical limitations of existing techniques. 
     M. H. Bhuiyan et al. [13] proposed a Deep Neural Network 

(DNN) based NIDS to detect stealth and polymorphic attacks with 

99% accuracy, besting hybrid architectures such as CNN+BiLSTM 

and GRU+RNN. However, high throughput or real-time 

applications can face issues due to high computational complexity 

and not having explicit optimization for features. Z. Ahmad et al. 

[14] indicated that RNNs and autoencoders can work well for 

detection, but lack of standardized assessment and benchmarking 

processes can lead to uncomparable or replicable results. 
      M. M. Hoque et al. [15] utilized a CNN+BiLSTM combination 

to achieve high accuracy in identifying Trojan horse traffic, though 

evaluation on broader attack types was lacking. Alzahrani et al. [16] 

developed an ML-based NIDS for Software-Defined Networks, 

reducing features from 41 to 5 while maintaining 95.95% accuracy, 

though excessive reduction may have excluded key discriminatory 

features. Monir et al. [17] explored IDS designs using a Click 

modular router, noting that jitter and transmission rates adversely 

indicated interference. Bhuiyan et al. [18] proposed an IoT-based 

home automation framework using multiple sensors for security but 

found limited resilience to IoT cyberattacks. Rahman et al. [19] 

implemented permission-based feature selection for detecting 

Android malware, where overlapping permissions between 

malicious and benign apps caused higher false positives. 
      To tackle these issues, an optimized multi-algorithm ensemble 

Network Intrusion Detection System is proposed using XGBoost, 

Random Forest, deep neural networks, and Bidirectional long-short 

term memory with Recursive Feature Elimination. The system 

achieves high accuracy, minimal false positives, and real-time 

efficiency. SHAP enhances explainability by identifying critical 

features, ensuring scalability and reliability in NIDS research. 

III. METHODOLOGY 

Data plays a fundamental role in machine learning as the basis 
for predictive algorithms, which include both regression and 
classification techniques, as illustrated in Fig. 1 below.

 
Fig. 1: Proposed Methodology 

A. Dataset 

The dataset from Kaggle [10] consists of 25,192 rows of network 

traffic statistics, with 39 columns capturing both regular and 

anomalous activity. The dataset is provided in CSV format and is 

well suited to training an intrusion detection model because of its 

diversity. 

 
Fig.2: Features analysis 

Fig. 2 illustrates the improved visual understanding of feature 
interactions by visualizing patterns and correlations in the data. These 
visualizations help expand our knowledge and aid in identifying the 
important variables needed in order to evaluate machine learning 
models on network intrusion detection systems (NIDS). 

B. Data Pre-processing 

     In order to conduct reliable machine-learning analysis, data must 
be pre-processed. This section discusses important methods for 

preparing the dataset to perform intrusion detection. In this study, the 
following pre-processing methods were used: 

➢   Handling Missing Values: Imputation and deletion were used to 
resolve missing values in the dataset, guaranteeing machine 
learning algorithms a smooth learning experience [11].  

➢   Transforming Categorical Variables: One-hot encoding is used 
to prepare categorical variables for machine learning by 
converting them into binary vectors (1 for presence, 0 for 
absence) [12].  

➢   Dropping Unnamed Column: To ensure the model focuses on 
relevant data, the unidentified column- which was probably 
unnecessary and automatically generated-was eliminated in 
order to streamline the dataset and lower noise. 

C. Feature Selection 

     To identify the most pertinent subset, the model-based feature 

selection technique Recursive Feature Elimination (RFE) removes 

features systematically. The pairwise correlations between features 

selected by RFE are shown in Fig. 3 (“Selected Features Correlation 

Matrix”). The heatmap highlights duplicate characteristics through 

connections ranging from strong positive to negative. For instance, 

a strong correlation between src_bytes and dst_bytes suggests 

potential information overlap. This visualization enhances model 

interpretability and performance by ensuring the final feature set is 

predictive and minimally redundant, supporting RFE’s goal of 

optimized feature selection. 



 

 
Fig.3: Selected Feature Correction Matrix 

 

D. Machine Learning Models 

     Machine learning models improve cybersecurity analysis for 

Network Intrusion Detection Systems. Logistic Regression 

classifies normal versus abnormal traffic, Decision Trees enhance 

explainability, Random Forest boosts accuracy, XGBoost detects 

subtle intrusion patterns, and SVM separates complex patterns. 

Testing identifies the optimal detection model for best performance 

output. 

E. Classification Metrics 

     To assess the performance of our NIDS using machine learning, 

we used the following essential metrics for evaluation: accuracy, 

recall, precision, F1-score, and the Confusion Matrix was used to 

view the details of the predictions. 

1) Confusion Matrix: The Confusion matrix segments true 

negatives (TN), false positives (FP), false negatives (FN), and test 

positives (TP) to demonstrate prediction accuracy and identify kinds 

of mistakes. This study shows the types of categorization errors to 

improve the model.  

 

2) Accuracy: The percentage of true positives as well as real 

negatives to all instances is known as accuracy, and it gauges how 

accurate our models are overall. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
{𝑇𝑃 +  𝑇𝑁}

{𝑇𝑃 +  𝐹𝑃 +  𝑇𝑁 +  𝐹𝑁}
 

(1) 

 

3) Precision: The precision of our models is determined by 

dividing the number of genuine positive forecasts by the total 

number of positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
{𝑇𝑃}

{𝑇𝑃 +  𝐹𝑃}
 

(2) 

 

4) Recall (Sensitivity): The model's recall, also known as 

sensitivity, is determined by dividing the total number of real 

positive instances by the fraction of genuine positives. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
{𝑇𝑃}

{𝑇𝑃 +  𝐹𝑁}
 

(3) 

 

5) F1-Score: The F1-Score is a fair indicator of the model's 

ability to recognize beneficial as well as detrimental occurrences. 

𝐹1 =  2 ∗
{𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙}

{𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙}
 

(4) 

 

IV. RESULT ANALYSIS  

      Based on a detailed study of accuracy in machine learning 

algorithms for NIDS, the best performing algorithm was XGBoost 

at 99.78% accuracy, followed by Random Forest at 99.71%, 

Decision Tree at 99.36%, and Logistic Regression at 95.55%. 

Conversely, BernoulliNB and AdaBoost demonstrated reasonable 

accuracy, whereas linear models such as Logistic Regression and 

LinearSVC had somewhat worse performance. According to this 

investigation, deep learning models like BiLSTM and ensemble 

techniques like XGBoost, Random Forest, LGBM, and CatBoost 

show outstanding precision, recall, and F1 scores in addition to high 

accuracy when it comes to identifying abnormalities and regular 

traffic. Simplified models and the Support Vector Classifier (SVC) 

trail a little, suggesting room for improvement. Precision, recall, and 

F1-score are anomaly-based metrics that were used to evaluate the 

proposed NIDS. Precision measures the number of correctly 

identified attacks among the predictions, while recall is about the 

actual attacks detected. The F1-score balances both. They 

collectively estimate detection reliability for rare critical intrusions 

within military network environments. These results provide 

important information for choosing the best algorithm to improve 

network intrusion detection systems' cybersecurity.

TABLE I.  PERFORMACE ANALYSIS OF VAIOUS ML

Classifier Accuracy Anomaly 

Precision 

Anomaly 

Recall 

Anomaly F1 Normal 

Precision 

Normal 

Recall 

Normal F1 

XGB Classifier 0.9978 0.9958 0.9972 0.9973 0.9958 0.9972 0.9973 

Random Forest Classifier 0.9971 0.9980 0.9959 0.9969 0.9964 0.9982 0.9973 

LGBM Classifier 0.9970 0.9983 0.9952 0.9968 0.9958 0.9985 0.9972 

CatBoost Classifier 0.9968 0.9983 0.9949 0.9966 0.9956 0.9985 0.9970 

Voting Classifier 0.9960 0.9979 0.9935 0.9957 0.9944 0.9982 0.9963 

Gradient Boosting Classifier 0.9946 0.9945 0.9939 0.9942 0.9946 0.9952 0.9949 

Decision Tree Classifier 0.9936 0.9929 0.9935 0.9932 0.9943 0.9938 0.9940 

KNeighbors Classifier 0.9933 0.9952 0.9905 0.9928 0.9917 0.9958 0.9938 

SVC 0.9898 0.9878 0.9905 0.9891 0.9917 0.9893 0.9905 

AdaBoost Classifier 0.9878 0.9881 0.9857 0.9869 0.9875 0.9896 0.9886 

Logistic Regression 0.9555 0.9608 0.9431 0.9519 0.9511 0.9664 0.9587 

Linear SVC 0.9555 0.9640 0.9397 0.9517 0.9485 0.9694 0.9588 

RFE_Logistic Regression 0.9320 0.9357 0.9172 0.9264 0.9289 0.9450 0.9369 

BernoulliNB 0.8962 0.9416 0.8287 0.8815 0.8646 0.9551 0.9076 

BiLSTM 0.9968 0.9986 0.9946 0.9966 0.9953 0.9988 0.9970 

DNN 0.9754 0.9895 0.9002 0.9434 0.9500 0.9880 0.9687 



 

  
TABLE II.  HYPERPERAMETER DETAILS 

Model Key Hyperparameters Values/Ranges Optimization 

Method 

Special Notes 

XGBoost learning_rate, max_depth, n_estimators 0.01-0.3, 3-10, 50-200 Bayesian Opt GPU acceleration enabled 

Random Forest n_estimators, max_depth, 

min_samples_split 

100-500, 10-50, 2-10 GridSearchCV Gini impurity, bootstrap=True 

LightGBM num_leaves, learning_rate, 

feature_fraction 

15-255, 0.01-0.1, 0.7-1.0 Random Search categorical_feature handling 

CatBoost iterations, depth, l2_leaf_reg 500-2000, 4-10, 1-10 Automated Built-in categorical processing 

Voting 
Classifier 

weights, voting Optimized, ['hard','soft'] Custom RF+XGB+LR combination 

Gradient 

Boosting 

loss, learning_rate, n_estimators deviance/huber, 0.05-0.2, 50-

200 

GridSearch subsample=0.8 

Decision Tree max_depth, min_samples_leaf 5-30, 1-10 RandomizedSearch splitter='best' 

KNN n_neighbors, weights, p 3-15, ['uniform','distance'], 
[1,2] 

GridSearch metric='minkowski' 

SVC C, kernel, gamma 0.1-10, ['rbf','poly'], 

['scale','auto'] 

Bayesian probability=True 

AdaBoost n_estimators, learning_rate 50-200, 0.01-1.0 GridSearch base_estimator=DT 

Logistic 

Regression 

penalty, C, solver ['l1','l2'], 0.001-10, 

['liblinear','saga'] 

Hyperopt class_weight='balanced' 

Linear SVC penalty, C, loss ['l1','l2'], 0.001-10, 

['hinge','squared_hinge'] 

Random Search dual=False 

RFE Logistic n_features_to_select, step 10-50, 1-5 RFECV estimator=LogisticRegression 

BernoulliNB alpha, binarize 0.1-1.0, 0.0-1.0 GridSearch fit_prior=True 

BiLSTM units, dropout, epochs 64-256, 0.1-0.5, 20-100 Keras Tuner return_sequences=True 

DNN hidden_layers, dropout 2-5, 0.1-0.5 Hyperband batch_norm=True 

 

  
(a). XGBoost (b). Random Forest 

Fig.4: Confusion Matrix of the best models 

 

XGBoost and Random Forest perform well, whereas Support 

Vector Machine (SVM) performs worse, according to Fig. 4, 

which compares F1-score, accuracy, precision, and recall among 

models. 

V. EXPLAINABLE AI 

 
Fig.5: SHAP Summery plot of the XGBoost model 

 
     This SHAP summary plot shows how each feature affects the 

XGBoost model's predictions. Features are displayed on the y-

axis, and the x-axis displays the SHAP values that represent each 

feature's contribution to the model's output. A single prediction is 

represented by each dot, which is colored according to the feature 

value (blue for low, red for high), illustrating how various values 

affect the forecast's direction. The large range of SHAP values 

indicates that features near the top, such src_bytes and dst_bytes, 

have the most overall impact. The plot helps users understand 

which inputs influence model choices and how they are made by 

giving them a clear, interpretable picture of feature significance 

and behavior. 
 

 
Fig.6: SHAP Summery plot of the Random Forest model 

 

     By listing each feature on the y-axis and showing its 
corresponding SHAP values on the x-axis, this SHAP summary 



 

plot for a Random Forest model shows how different features 
affect the model's predictions. Positive values indicate a higher 
likelihood of the predicted class, while negative values indicate a 
lower one. A single prediction is represented by each dot, which is 
colored according to the feature value (red for high, blue for low), 
demonstrating the impact of varying feature magnitudes on results. 
Recognizable attributes with wide SHAP value distributions (for 
example, src_bytes, dst_bytes, and dst_host_same_srv_rate) show 
their considerable influence on model decisions. This graphic is 
beneficial for understanding how the Random Forest model 
operates since it provides a succinct, clear summary of feature 
importance and behavior. 

TABLE III.  COMPARISON TABLE WITH EXISTING WORK 

Author Dataset Method Accuracy XAI 

Bhuiyan et 
al. [13] 

Not 
specified 

(benchmar

k datasets 
implied) 

DNN 99% × 

Hoque et al. 

[15] 

Real-world 

datasets 

CNN+BiL

STM 

High (not 

quantified) 
× 

Alzahrani 

[16] 

NSL-

KDD(41 

features 
reduced to 

5) 

ML-

integrated 

NIDS in 
SDN 

95.95% × 

proposed 

methodolog

y 

Kaggle 

Network 

Intrusion 

Detection  

XGBoost 

(with RFE 

and 

SHAP) 

99.78% SHAP 

 

VI. CONCLUSION 

To advance beyond current methodologies while achieving 

computational efficiency and lower false alarm rates for real-

world operationalization, this study presents a robust ensemble 

framework based on XGBoost, Random Forest, CatBoost, and 

BiLSTM models, which incorporates optimized features. The 

proposed ensemble framework achieves maximum accuracy of 

99.78% on the Kaggle dataset. A meaningful step toward 

protecting military and important network infrastructures has 

been taken with the addition of Recursive Feature Elimination 

(RFE) and Grid Search optimization to improve model 

performance, and SHAP-based explainability that reveals 

important feature contributions and fosters trust. Future work will 

focus on expanding the framework in terms of robustness and 

scalability to next generation NIDS, against dynamic threat 

environments, with adaptive learning techniques and real-time 

data streams, exploring lightweight models for edge computing, 

federated learning for privacy-preserving multi-domain 

deployments, and improving SHAP interpretations through 

counterfactual analysis. 
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