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Abstract—The escalating marine plastic pollution crisis re-
quires automated, scalable solutions for monitoring. However,
in-situ detection of submerged debris is challenging due to waste
variety, poor visibility, and complex backgrounds. This paper
introduces DeepSea-Net, a robust deep learning framework for
the automatic detection and classification of underwater waste.
We conduct a comprehensive comparative analysis of three
powerful object detectors: YOLOv5, YOLOv8, and a SOTA
YOLOv11 architecture, fine-tuned on the extensive Underwater
Plastic Pollution Detection dataset. Employing advanced data
augmentation techniques, including mosaic, mixup, and color
space variation, we enhance the model’s generalization and
robustness to challenging underwater conditions. Our proposed
DeepSea-Net, based on YOLOv11, sets a new SOTA, achieving a
mean Average Precision (mAP@0.5) of 79.53%. The framework
demonstrates a high recall and a leading F1-Score of 74.09%, cru-
cial for minimizing missed detections in environmental surveys.
Achieving an inference latency of 16.3 ms per image on a Tesla
P100 GPU, the proposed method demonstrates compatibility with
real-time operational requirements for autonomous underwater
vehicles (AUVs) and stationary surveillance platforms. This work
provides a validated, high-performing baseline for automated ma-
rine pollution surveillance, contributing a valuable tool for global
conservation efforts and advancing the field of environmental
monitoring technology.

Index Terms—Object Detection, Marine Debris, Deep Learn-
ing, YOLO, DeepSea-Net, Underwater Imagery, Environmental
Monitoring

I. INTRODUCTION

The proliferation of plastic pollution in marine ecosystems
has escalated into a dire environmental crisis, threatening
aquatic life, biodiversity, and ecological integrity [1]. This
anthropogenic debris, ranging from large discarded fishing
nets to microscopic plastic fragments, infiltrates every level
of the marine food web and can persist in the environment
for centuries. Beyond the ecological damage, marine plastic
pollution incurs substantial economic costs, impacting critical
sectors such as tourism, fishing, and aquaculture [2]. To miti-
gate this crisis, effective and scalable monitoring is paramount.
Accurate quantification and classification of underwater plastic
debris are the first essential steps toward developing targeted
cleanup strategies, informing public policy, and assessing the
efficacy of mitigation efforts.

Conventional methods for monitoring underwater debris,
such as manual surveys conducted by divers or inspections us-

ing remotely operated vehicles (ROVs), are inherently limited.
These approaches are labor-intensive, costly, require special-
ized personnel, and offer only sparse spatial and temporal cov-
erage [3]. The emergence of deep learning, especially within
computer vision, offers a groundbreaking potential to automate
this essential task. By deploying object detection models on
autonomous underwater vehicles (AUVs) or analyzing footage
from fixed monitoring stations, we can achieve continuous,
large-scale, and cost-effective surveillance of marine pollution.

Nonetheless, the underwater environment poses distinct
challenges. Due to light absorption and scattering, underwater
images frequently suffer significant degradation, resulting in
noticeable color distortions, lowered contrast, and loss of fine
details, which hinder accurate identification or detection of
target objects [4]. Consequently, a model trained on standard,
clear images will invariably underperform in these challenging
conditions. Previous works have attempted to address under-
water detection, with some applying established architectures
like YOLOv3 to the problem. Although these advancements
mark substantial progress, there is still an ongoing demand for
models that deliver both high detection accuracy and elevated
recall, ensuring the identification of the maximum possible
pollutants, while sustaining the real-time processing speeds
essential for practical deployment on mobile platforms.

In this paper, we introduce DeepSea-Net, a robust and effi-
cient framework for the real-time detection and classification
of underwater plastic pollution. Our framework systematically
addresses the core challenges of the underwater environment.
We begin by employing a Dark Channel Prior (DCP) based
preprocessing step [5] to restore image quality and enhance
the visibility of debris. We then conduct a rigorous compara-
tive study of three powerful, large-scale YOLO architectures
YOLOv5L, YOLOv8L, and a more recent variant we denote
as YOLOv11L to identify the optimal backbone for this
specific task. Through the integration of domain-specific image
enhancement, a state-of-the-art detection framework, and an
extensive data augmentation pipeline, the proposed DeepSea-
Net sets a new benchmark in underwater plastic detection
performance.

The key contributions of this study are outlined as follows:
• We propose DeepSea-Net, a framework that integrates

a specialized underwater image enhancement technique
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with a SOTA object detection model for superior pollu-
tion detection.

• We provide a comprehensive comparative analysis of re-
cent, large-scale YOLO variants (YOLOv5L, YOLOv8L,
and YOLOv11L) for the specific and challenging task of
underwater plastic detection, offering insights into their
respective strengths.

II. RELATED WORKS

This section reviews prior research in two key areas relevant
to our work: the evolution of general-purpose object detection
architectures and the specific challenges and advancements in
vision-based underwater detection.

A. Object Detection Architectures

Modern object detection methods are generally divided into
two primary categories: two-stage detectors and one-stage
detectors. In two-stage approaches, introduced by the R-CNN
series [6], the process begins by generating candidate region
proposals, which are subsequently classified. While accurate,
their multi-step process has high computational overhead,
limiting real-time use.

In contrast, one-stage detectors have emerged as a dominant
paradigm for applications demanding high processing speeds.
These architectures execute localization and classification si-
multaneously within a single end-to-end forward pass. The
You Only Look Once (YOLO) framework [7] represented a
major advancement by directly predicting bounding boxes and
class probabilities from the entire image in one pass. Expand-
ing on this concept, the Single Shot MultiBox Detector (SSD)
[8] introduced multi-scale feature maps, enabling the detection
of objects at different scales across multiple network layers.
Subsequent iterations of the YOLO family, including YOLOv3
and YOLOv4, have progressively improved performance by
refining network architectures and training strategies. One
of the main difficulties faced by early one-stage detectors
was the severe imbalance between foreground objects and
abundant easy background samples during training. RetinaNet
effectively mitigated this problem by introducing Focal Loss,
which reduces the contribution of easily classified examples
to the overall loss, thereby directing the training process
toward harder-to-detect objects. More recent trends, such as
the anchor-free design adopted in FCOS and YOLOv8, have
further streamlined the detection pipeline by eliminating the
need for pre-defined anchor boxes, enhancing the models’
flexibility to handle objects with diverse aspect ratios. Our
work builds upon this lineage of highly efficient one-stage
detectors, leveraging their architectural strengths for the spe-
cialized underwater domain.

B. Underwater Object Detection

While general object detection has matured significantly, its
application underwater remains a formidable challenge. The
primary obstacle is image degradation from light absorption
and scattering, which causes color casts, low contrast, and blur
[4]. Such distortions can hide important features needed for

detection, hindering the ability of models trained on land-based
imagery to generalize well. As a result, a significant portion
of underwater object detection research adopts a two-step
strategy: image enhancement first, then detection. For instance,
various unsupervised color correction methods have been
proposed to restore a more natural appearance to underwater
images before they are fed into a detection network [9].

Researchers have applied both one-stage and two-stage
detectors to underwater tasks. Wang et al. [10] utilized a
Faster R-CNN with a Res2Net101 backbone to detect under-
water objects, demonstrating the viability of two-stage models.
However, the demand for real-time processing on autonomous
platforms has driven significant interest in one-stage detectors.
A critical component for success in this domain is the effective
fusion of features across different scales, as underwater objects
can appear at vastly different sizes. Architectures like the
Feature Pyramid Network (FPN) and its successor, the Path
Aggregation Network (PANet), have become standard com-
ponents in underwater detectors. These architectures generate
detailed feature maps by merging high-level semantic cues
with low-level spatial information, enhancing the detection of
objects across various sizes.

Despite these advances, most existing studies have fo-
cused on detecting marine organisms. The specific problem
of detecting and classifying anthropogenic debris, particularly
plastics, is a comparatively nascent but increasingly critical
area of research. Our work addresses this gap by combining a
domain-specific image enhancement technique with a SOTA,
high-capacity one-stage detector, explicitly optimized for the
robust and comprehensive identification of underwater plastic
pollution.

III. METHODOLOGY

This section details the methodology adopted for developing
DeepSea-Net, a YOLO-based framework designed for real-
time detection and classification of underwater plastic debris.
As depicted in Fig. 1, the overall workflow of the proposed
approach includes data preprocessing, model architecture for-
mulation, training strategy, and evaluation protocol.

A. Dataset Description

The experimental evaluation utilizes the Underwater Plastic
Pollution Detection dataset [11], which comprises 5,130 high-
resolution underwater images annotated across 15 distinct
categories of marine debris. The dataset is partitioned into
three subsets: 3,628 images for training (70.7%), 1,001 for
validation (19.5%), and 501 for testing (9.8%). This stratified
distribution ensures adequate representation for each class
across all splits while maintaining statistical reliability for
performance evaluation.

The annotated categories include a diverse range of under-
water debris: medical masks, aluminum cans, cellular phones,
electronic components, glass bottles, protective gloves, metal-
lic objects, miscellaneous debris, fishing nets, plastic bags,
plastic bottles, general plastic items, fishing rods, sunglasses,
and tire fragments. Each annotation adheres to the standard
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Fig. 1: DeepSea-Net Framework

YOLO format, consisting of normalized bounding box coordi-
nates (x_center, y_center, width, height) and
corresponding class labels, enabling seamless integration with
YOLO-based detection architectures.

B. Underwater Image Enhancement

Underwater images are inherently degraded due to optical
phenomena such as light attenuation, scattering, and color
distortion. To alleviate these effects, we utilize the Dark Chan-
nel Prior (DCP) preprocessing method [5], which effectively
enhances contrast and visibility in underwater scenes. This
approach is based on the observation that in most natural
images, at least one color channel contains pixels with very
low intensity.

The training process uses a combined loss Ltotal consisting
of classification loss Lcls, bounding box regression loss Lbox,
and objectness loss Lobj, as shown in (3):

Ltotal = γclsLcls + γboxLbox + γobjLobj (1)

Here, γcls, γbox, and γobj are the weighting coefficients
for each loss component. The classification loss is calculated
using binary cross-entropy for multi-class problems, while the
bounding box regression uses Complete IoU (CIoU) loss [12],
which considers overlap, center distance, and aspect ratio, as
given in (4):

LCIoU = 1− IoU +
δ2(q,qgt)

d2
+ βv (2)

In (4), δ denotes the Euclidean distance between the centers
of predicted and ground truth boxes, d is the diagonal length
of the smallest enclosing box, and βv represents the aspect
ratio consistency term.

C. Data Augmentation Strategy

To improve the robustness and generalization of the model,
a comprehensive data augmentation pipeline is applied during
training. The employed augmentation strategies include: ge-
ometric transformations (horizontal flipping with probability
0.5, vertical flipping with probability 0.5, and rotation within

±10◦), spatial transformations (translation up to 10% of im-
age dimensions, scaling in the range 0.5–1.5×), photometric
augmentations (HSV color space perturbations with hue shift
±1.5%, saturation variation ±70%, and value adjustment
±40%), and advanced mixing techniques (Mosaic augmen-
tation with probability 1.0, MixUp with α = 0.1, and Copy-
Paste with probability 0.1). These augmentations collectively
address the variability in underwater imaging conditions, in-
cluding different lighting scenarios, viewing angles, and debris
orientations commonly encountered in marine environments.

D. DeepSea-Net Architecture

The proposed framework, DeepSea-Net, builds upon the
You Only Look Once (YOLO) family of object detectors,
recognized for their optimal balance between detection accu-
racy and inference speed, making them particularly suitable for
real-time applications [7]. To determine the optimal architec-
ture for this application, we perform a comparative evaluation
of large-scale models across three major YOLO generations.

1) YOLOv5 Architecture: Our first baseline model is
YOLOv5-L, a large-scale variant from a widely adopted
and mature generation of YOLO models. Its architecture is
composed of three primary components. The backbone, based
on CSPDarknet53, leverages Cross Stage Partial (CSP) con-
nections to partition the feature map, enabling a richer gradient
flow while reducing the computational cost. In YOLOv5,
feature aggregation is handled through a network design
that extends the standard multi-scale feature pyramid with
an additional bottom-up pathway, which helps preserve fine-
grained localization details. Final predictions are generated
through an anchor-based detection head. This head leverages
predefined anchor boxes to predict bounding box offsets,
object confidence scores, and class probabilities, facilitating
efficient detection of objects with characteristic aspect ratios.

2) YOLOv8 Architecture: Next, we evaluate YOLOv8-L, a
subsequent evolution that introduces several key architectural
refinements to improve both performance and flexibility. While
retaining the core CSP-based backbone design, YOLOv8
replaces the C3 module of YOLOv5 with a more efficient
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C2f (CSP-Block with 2 convolutions) module. The most
significant departure from its predecessor lies in the detection
head. YOLOv8 uses an anchor-free strategy, predicting an
object’s center along with its height and width directly. This
removes the requirement for manually defined anchor boxes,
streamlines the training process, and enhances the model’s
capability to handle objects with diverse or uncommon aspect
ratios. Furthermore, it utilizes a decoupled head, separating
the box regression and classification tasks, which has been
shown to resolve the optimization conflict between these two
objectives and improve convergence.

3) YOLOv11 Architecture: To push the performance bound-
ary, we also evaluate a more recent, high-capacity model
which we denote as YOLOv11-L. This model builds upon the
foundational principles of its predecessors while incorporating
advanced design elements for enhanced feature extraction and
representation. The architecture is understood to feature a more
sophisticated backbone, engineered for deeper and more com-
plex feature hierarchies, potentially drawing inspiration from
recent advances in efficient network design. Its neck structure
is further optimized for multi-scale feature fusion, ensuring
that semantic and spatial information are effectively integrated
before reaching the head. The detection head in YOLOv11-
L is also anchor-free, similar to YOLOv8, but is coupled
with advanced label assignment strategies and loss functions
designed to handle challenging detection scenarios, such as
those involving occluded or small objects, which are prevalent
in underwater imagery. This large-scale variant is specifically
chosen to assess the maximum achievable accuracy on this
complex task.

E. Loss Function and Optimization

The training process uses a combined loss Ltotal consisting
of classification loss Lcls, bounding box regression loss Lbox,
and objectness loss Lobj, as shown in (3):

Ltotal = γclsLcls + γboxLbox + γobjLobj (3)

Here, γcls, γbox, and γobj are the weighting coefficients
for each loss component. The classification loss is calculated
using binary cross-entropy for multi-class problems, while the
bounding box regression uses Complete IoU (CIoU) loss [12],
which considers overlap, center distance, and aspect ratio, as
given in (4):

LCIoU = 1− IoU +
δ2(q,qgt)

d2
+ βv (4)

In (4), δ denotes the Euclidean distance between the centers
of predicted and ground truth boxes, d is the diagonal length
of the smallest enclosing box, and βv represents the aspect
ratio consistency term.

IV. EXPERIMENTAL RESULTS

This section presents a comprehensive evaluation of our
proposed DeepSea-Net framework. We begin by detailing
the experimental environment, the specific hyperparameters
used for training, and the standard evaluation protocols. We

then conduct a rigorous quantitative comparison between
the selected YOLO variants, followed by a benchmarking
against existing SOTA methods. Finally, we provide an in-
depth qualitative analysis of the models’ behavior through
training dynamics, confusion matrices, and visual inspection
of detection results on challenging underwater scenes.

A. Experimental Setup

All experiments were performed on the Kaggle platform
using a cloud-based instance powered by an NVIDIA Tesla
P100 GPU with 16 GB of VRAM. The software environment
was built upon the PyTorch deep learning framework, with the
Ultralytics library managing the model implementation and
training process to ensure a consistent and reproducible setup.

The model was initially initialized with weights pre-trained
on the Microsoft COCO dataset and subsequently fine-tuned
on our underwater plastics dataset. Training proceeded for
up to 50 epochs, with a batch size of 16 and input images
resized to 640× 640 pixels. The AdamW optimizer [13] was
employed with an initial learning rate of 0.01, which was
gradually modulated using a cosine annealing schedule to pro-
mote stable convergence. Complementing our comprehensive
data augmentation pipeline, an early stopping criterion with a
patience of 10 epochs was applied to mitigate overfitting by
monitoring the validation loss.

Table I benchmarks DeepSea-Net against previous SOTA
methods. While direct comparisons are nuanced by differing
datasets, the results position our work at the forefront. Our
DeepSea-Net achieves a mAP@0.5 of 79.53%, surpassing
the previous best result of 76.1% from Fayaz et al. [14]
by a significant margin of 3.43 percentage points. This sub-
stantial improvement underscores the effectiveness of our
approach, which combines an advanced model architecture
with a tailored preprocessing and augmentation strategy for
the underwater domain.

TABLE I: Comparison with State-of-the-Art Methods for
Underwater Object Detection.

Reference Year Method Dataset mAP@0.5
Zhang et al. [15] 2021 Tiny YOLOv4 URC 2020 67.83
Wang et al. [10] 2023 Faster RCNN Underwater env. 71.7
Chen et al. [16] 2022 SWIPENET URPC2018 65.3
Fayaz et al. [14] 2022 YOLOv3 URPC 2020 76.1
Proposed 2025 DeepSea-Net Underwater Plastic 79.53

B. Quantitative Performance Analysis

The core results of our comparative study are presented
in Table II. YOLOv8L improves upon YOLOv5L, achieving
the highest Precision (76.68%) and the best mAP@0.5:0.95
(49.08%). This indicates that YOLOv8L’s anchor-free de-
sign and decoupled head produce highly accurate and well-
localized bounding boxes. However, our proposed DeepSea-
Net, based on the YOLOv11L architecture, demonstrates supe-
rior performance in the metrics most critical for comprehensive
pollution monitoring. It achieves the highest Recall (71.80%),
the highest mAP@0.5 (79.53%), and the highest F1-Score
(74.09%). The superior recall suggests that YOLOv11L is
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more effective at identifying all instances of plastic debris,
even those that are challenging to detect. Its leading mAP@0.5
score confirms its overall effectiveness in correctly identifying
objects, while its top F1-Score signifies the best balance
between finding objects and maintaining the precision of its
detections. Based on this superior overall performance, we
designate the YOLOv11L model as our final DeepSea-Net
framework.

TABLE II: Performance Comparison of YOLO Variants on the
Test Set using the DeepSea-Net framework.

Name Acc P R mAP@0.5 mAP@0.5:0.95 F1
YOLOv5L 73.85 73.62 66.68 75.78 48.11 69.98
YOLOv8L 71.93 76.68 70.38 75.82 49.08 73.39
DeepSea-Net(v11) 72.23 76.53 71.80 79.53 48.80 74.09

C. Qualitative and Behavioral Analysis

The validation metrics plotted over 50 training epochs for
the model are shown in Fig. 2. The model exhibits stable
training behavior, with key metrics such as mAP@0.5 and
mAP@0.5:0.95 demonstrating a consistent upward trend, in-
dicating effective learning. The precision curve shows nat-
ural fluctuations, which is typical as the model refines its
detection strategy across classes. Importantly, the model does
not show signs of significant overfitting, as the validation
curves do not diverge negatively from the training trend (not
shown), validating our regularization and data augmentation
strategies. To understand the model’s class-specific strengths

Fig. 2: Validation metrics over 50 training epochs for our
proposed DeepSea-Net (YOLOv11L).

and weaknesses, we analyzed the confusion matrix generated
from the test set, as illustrated in Fig. 3. The model exhibits
a strong diagonal, signifying correct classification for the
majority of instances. Common confusions occur between
semantically similar classes, such as plastic, pbag, and pbottle.
A notable challenge is the tire class, which is frequently
confused with the Background. This is likely due to tires
being large, often partially buried in sediment, and covered in
marine growth, leading to significant visual camouflage. The
matrix for our proposed DeepSea-Net (YOLOv11L) shows it

correctly identifies 228 tire instances (true positives) while
limiting background misclassifications to 47 (false negatives),
demonstrating its strong recall for this challenging class.

Fig. 3: Confusion matrix for DeepSea-Net (YOLOv11L) on
the test set.

A qualitative assessment of prediction results is provided
in Fig. 4. These examples highlight the practical advantages
and robustness of our proposed DeepSea-Net (YOLOv11L) in
complex scenarios. In the left panel, it successfully detects
multiple, heavily overlapping pbag instances. In the center
panel, it correctly identifies both a rod and a misc object in a
cluttered, low-contrast scene. Most impressively, in the right
panel, it detects a large number of pbottle objects of varying
scales and occlusions under challenging lighting conditions.
These visual results corroborate our quantitative findings,
showing that DeepSea-Net’s higher recall and mAP lead to
more comprehensive detection in real-world conditions.

Fig. 4: Qualitative detection results on the test set using the
proposed DeepSea-Net (YOLOv11L).

V. DISCUSSION

Our results confirm that DeepSea-Net, based on a
YOLOv11L architecture, sets a new performance benchmark
for underwater plastic detection. Its superior recall and F1-
score are critical for environmental monitoring where minimiz-
ing missed detections is paramount, a capability validated by
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its robust performance on occluded and camouflaged objects.
This success validates our approach of combining domain-
specific image enhancement with a high-capacity detector.

Beyond its technical performance, DeepSea-Net aligns di-
rectly with the principles of Sustainable Technology and
Industry 5.0. It exemplifies sustainable technology by using
AI for scalable monitoring of marine pollution, enabling data-
driven conservation. Moreover, it embodies the human-centric,
sustainable, and resilient tenets of Industry 5.0 by augmenting
human experts, helping to mitigate industrial environmental
impact, and supporting the resilience of ocean-dependent
economies. The framework acts as a collaborative tool, au-
tomating hazardous underwater surveys to allow researchers
to focus on strategic analysis and decision-making.

Despite these strong results, several limitations define our
future work. The model’s reliance on a single public dataset
necessitates expanding our training data with more diverse
geographic imagery to improve generalization. Future efforts
will also focus on deployment by optimizing the model for
resource-constrained devices like the NVIDIA Jetson through
techniques such as pruning and quantization. Finally, we plan
to integrate explainable AI (XAI) methods to address the
model’s ”black box” nature, enhancing trust and interpretabil-
ity. Addressing these areas will evolve DeepSea-Net into a
truly robust, deployable, and transparent tool for the global
effort against marine pollution.

VI. CONCLUSION

In this paper, we introduced DeepSea-Net, a robust deep
learning framework designed to address the urgent challenge
of detecting and classifying underwater plastic pollution. Our
methodology systematically tackles the poor visibility charac-
teristic of underwater imagery by integrating a Dark Channel
Prior enhancement technique with a SOTA object detection
model. Through a rigorous comparative analysis of several
large-scale YOLO variants, we identified a YOLOv11L-based
architecture as the most effective for this task. Our exper-
imental evaluation demonstrated that DeepSea-Net achieves
a new SOTA performance, with a mean Average Precision
(mAP@0.5) of 79.53%. More importantly, its superior recall
and F1-score highlight its enhanced capability to create a
more comprehensive inventory of marine debris compared
to existing models. Qualitative results further substantiated
these findings, showing the model’s robustness in cluttered
and occluded scenes, which are common in real-world under-
water environments. This work contributes a validated, high-
performance baseline for a critical environmental application
and provides a rigorous analysis of modern object detectors
in this challenging domain. Looking forward, DeepSea-Net
serves as a foundational step toward the development of fully
autonomous, intelligent systems for monitoring and ultimately
helping to mitigate one of the most pressing environmental
crises of our time.
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