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Abstract. Accurate and efficient classification of brain tumors by mag-
netic resonance imaging (MRI) scans is essential for clinical follow-up and
treatment planning. However, in deep learning models, computational
costs are often a significant barrier to practical application. This pa-
per presents Feature-Aligned Knowledge Distillation with XAI (FAKD-
XAI), a novel framework that classifies and rationally interprets brain
tumors in an efficient manner. FAKD-XAI combines logit-level Knowl-
edge Distillation with an adaptive intermediate feature-level distillation
from ResNet-50 (Teacher Model) to a lightweight MobileNetV3-Large
(Student Model) to facilitate learning between complex and simple mod-
els. Our alignment module featuring a 1×1 convolution layer was able
to overcome the architectural divergences of the student model and en-
abled the efficient use of stratified feature transfer at different levels of
the hierarchy. FAKD-XAI integrates Local Interpretable Model-agnostic
Explanations (LIME), which enhances the understanding of the workings
behind model predictions, leading to promoting trust from the clinicians.
FAKD-XAI achieved an accuracy of 99.47% on the Brain Tumor MRI
dataset while maintaining high computational efficiency, with an average
inference time of 5.25 ms per image. This makes it highly suitable for
practical, clinical deployment. The use of Explainable AI (XAI) confirms
that the model focuses on pertinent tumor areas, suggesting FAKD-XAI’s
usefulness as a reliable diagnostic aid. All code is available on GitHub:
https://github.com/borhanitrash/FAKD-XAI

Keywords: Brain Tumor Classification · Magnetic Resonance Imaging
(MRI) · Feature-Aligned Knowledge Distillation (FAKD) · Explainable
Artificial Intelligence (XAI) · Lightweight Convolutional Neural Net-
works · Computational Efficiency.
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1 Introduction

Brain tumors are among the most life-threatening forms of cancer, contributing
to significant mortality and morbidity worldwide. In 2022, it was reported that
nearly 700,000 people were living with a brain tumor in the United States alone,
with approximately 84,000 new cases diagnosed annually [1]. Early and accurate
classification of brain tumors is critical for treatment planning and improving
survival rates.

Magnetic Resonance Imaging (MRI) remains the gold standard for brain
tumor diagnosis due to its high-resolution imaging capabilities [2]. However,
manual diagnosis is time-consuming, subjective, and requires expert radiologists,
which makes automated classification methods highly desirable. In recent years,
deep learning techniques, particularly Convolutional Neural Networks (CNNs),
have demonstrated remarkable success in medical imaging applications, including
brain tumor classification [3–5].

Despite their impressive performance, deep learning models often involve
complex architectures with millions of parameters, leading to high computational
costs and memory requirements [6]. This makes them unsuitable for deployment
in resource-constrained environments such as mobile healthcare applications or
rural clinics. Knowledge Distillation (KD) has emerged as a promising technique
to mitigate these limitations by transferring knowledge from a large teacher
model to a smaller student model without significant performance degradation
[7].

Traditional KD methods focus mainly on matching the output logits of the
teacher and student networks [7]. However, recent research highlights that in-
corporating intermediate feature representations during distillation can lead to
substantial improvements in student performance, especially in tasks requiring
fine-grained pattern recognition, such as brain tumor classification [8, 9].

In this paper, we propose a novel framework, Feature-Aligned Knowledge
Distillation with XAI (FAKD-XAI), to enhance the accuracy, efficiency, and in-
terpretability of brain tumor classification. The key contributions of our proposed
method are as follows:

– Presented a new framework called Feature-Aligned Knowledge Distil-
lation with XAI (FAKD-XAI) that enables efficient knowledge trans-
fer from a deep teacher (ResNet-50) [10] to an effective student model
MobileNetV3-Large [11] by combining logit-level distillation with adaptively
aligned intermediate feature-level distillation.

– Integrated Explainable AI (XAI) using LIME [12] with the distilled student
model, offering visual representations of the model’s decision-making process
to improve clinical trust and transparency.

– Achieved 99.47% accuracy on the Brain Tumor MRI dataset with lower
computational cost, outperforming baseline models, suitable for real-world
deployment.
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2 Literature Review

Several approaches have been made to detect and classify brain tumors using
deep learning and Knowledge Distillation (KD) methods. Jiang et al. [13] used
KD to train a five-layer student CNN from a DenseNet121 teacher model. The
student model achieved an impressive 97.48% accuracy, sometimes surpassing
the teacher model. The authors used average map visualizations across the con-
volutional layers of the student model. The authors utilized the same dataset,
which includes four tumor classes, as described in the dataset section. Gohari et
al. [14] approached this problem using a combination of federated learning and
KD to classify brain tumors into three classes. They used the VGGNet16 teacher
model trained on MRI data to distill the knowledge into the student model, help-
ing it achieve 94.38% accuracy. Anantathanavit et al. [15] trained ResNet18 as
the teacher model on a small dataset of 357 MRI images. The student model
achieved 98.10% accuracy using fewer resources, producing results comparable to
larger models like VGG. Kanchanamala et al. [16] proposed a hybrid QDCNN-
DMN model that enhanced MRI images using logarithmic transformations to
classify tumors into three types: GD-ET, ED, and NCR/NET. Zarenia et al. [17]
introduced a framework for automated brain tumor classification and segmenta-
tion using a multiscale deformable attention module (MS-DAM). The MS-DAM
model achieved over 96.5% classification accuracy and performed tumor segmen-
tation to enhance diagnostic precision. Guan et al. [18] proposed a framework for
automated brain tumor classification using low-quality MRI images, achieving a
classification accuracy of 98.04% on a public dataset. Chaitanya and Satpathy
et al. [19] proposed a knowledge-distilled ResNeXt-50 model that preprocesses
MRI images and classifies brain tumors using transfer learning and KD. The
student model achieved 95.3% accuracy, outperforming models like VGG16.

3 Materials and method

In this section, we present our proposed, Feature-Aligned Knowledge Distillation
with XAI (FAKD-XAI) framework for brain tumor classification. The proposed
method transfers knowledge from a bigger teacher network to a more effective
student network, which is especially tailored for medical image analysis tasks.
It’s done by combining multi-level knowledge transfer through feature alignment
and distillation.

3.1 Dataset Description

This study used the Brain Tumor MRI dataset from Kaggle [20]. This dataset
is a combination of the SARTAJ, Br35H, and figshare datasets. It included
7,023 brain MRI images in four different classes: pituitary tumor (1,757 images),
meningioma (1,645 images), glioma (1,621 images), and no tumor (2,000 images).
The dataset was pre-divided into training (5,712 images) and testing (1,311 im-
ages) sets. The images displayed differences in intensity, contrast, noise levels,
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and anatomical characteristics, emulating real clinical environments. These nat-
ural differences enhance model development with practical clinical applicability
and enhance generalization capacities for brain tumor classification tasks.

3.2 Dataset Preprocessing

Initially, we split the training set, allocating 80% of the data for model training
and 20% for validation, as this dataset lacked a designated validation set. We
converted the images to RGB format to ensure compatibility with pre-trained
models. Images were downsized to 224 × 224 pixels using bilinear interpolation
and normalized with parameters (mean = [0.5, 0.5, 0.5], std = [0.5, 0.5, 0.5]).
We applied data augmentation techniques, including random horizontal flipping
(p = 0.5) and random rotation (±15◦), to improve model generalization while
maintaining anatomical integrity. A tailored BrainMRIDataset class was created
with thorough error management, ensuring uniform class-to-index relationships.
The data loading process utilized PyTorch’s DataLoader, implementing batch
sizes of 32 for training and validation, and 16 for testing, while enabling parallel
processing to improve training efficiency.

3.3 Overview of the Distillation Framework

Knowledge distillation (KD) has become a prominent technique for compressing
deep neural networks while maintaining performance. As initially formulated by
Hinton et al. [7], KD transfers knowledge from a teacher model to a student
model by training a smaller student model to replicate the output of a larger
teacher model. The conventional KD loss mostly focuses on the soft output pre-
dictions. However, recent studies [8,9] showed that aligning intermediate feature
representations captures detailed information, which can be significantly benefi-
cial to the student model, especially in the medical image analysis domain where
pattern recognition is crucial.

As illustrated in Fig. 1, our FAKD-XAI framework extends the conventional
KD approach by integrating feature-level information transfer with logit-level
distillation while maintaining direct supervision from ground truth labels.

3.4 Network Architecture

Teacher Network: We chose the ResNet-50 architecture, pre-trained on Im-
ageNet, as our teacher network. With its 50 convolutional layers and residual
connections, ResNet-50 has demonstrated remarkable performance across var-
ious computer vision tasks, including medical image classification. In our ap-
proach, the final fully connected layer was modified to output predictions for
our specific brain tumor classification task, encompassing four classes: pituitary,
meningioma, glioma, and no tumor.

The depth and complexity of ResNet-50 enable it to learn rich hierarchi-
cal features, making it an ideal teacher model. However, its computational re-
quirements (approximately 25.6 million parameters) can limit its deployment in
resource-constrained medical environments.
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Fig. 1. FAKD-XAI Frameworks

Student Network: MobileNetV3-Large, which uses effective depthwise separa-
ble convolutions and squeeze-and-excitation blocks to achieve good performance
with much fewer parameters, is used as our student network. We modify the
final classifier layer to fit our four-class classification task. MobileNetV3-Large is
suitable for deployment in memory-constrained situations or mobile healthcare
applications because it has about 7.5 times fewer parameters than ResNet-50
while still performing competitively.

3.5 Intermediate Feature Extraction

In order to capture richer, hierarchical feature representations beyond the fi-
nal output logits, the hybrid distillation framework heavily relies on knowledge
transfer from intermediate layers. To enable this, a FeatureExtractor wrap-
per module was created. During the forward pass, this wrapper uses PyTorch’s
register_forward_hook to intercept and capture activation maps from specific
intermediary layers of the teacher and student models.

The output of the layer3 residual block is used to extract features for the
ResNet-50 teacher model, providing a typical mid-to-high level embedding. For
the MobileNetV3-Large student architecture, activations are retrieved at the
features.16 stage (with the entire features module serving as a fallback),
which precedes the final pooling and classification segments. These selection
decisions help mitigate architectural discrepancies by aligning the semantic depth
captured by both models.

3.6 Feature Alignment Module

Directly comparing feature maps from the teacher and student networks is prob-
lematic when their spatial dimensions (height and width) and channel depths
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are not the same. To overcome this problem, a two-stage alignment process is
used prior to the computation of the feature-based distillation loss.

For spatial alignment, the student’s feature maps (student_features) are
first upsampled to the spatial resolution of the teacher’s feature maps
(teacher_features). This resizing is performed using bilinear interpolation (i.e.,
F.interpolate with mode=’bilinear’ and align_corners=False).

The number of channels may still differ even after matching spatial di-
mensions. Channel alignment is introduced as a solution to this issue. It is a
lightweight projection layer, implemented as a single 1× 1 convolution
(torch.nn.Conv2d), placed on top of the upsampled student features. This con-
volutional layer adjusts the channel count to match that of the teacher’s features.
Its parameters are optimized jointly with the student model during training.
These two modules ensure that student and teacher feature maps are directly
comparable by first aligning spatial dimensions and then equalizing channel
depths. This allows for an efficient feature-based similarity loss computation.

3.7 Feature-Aligned Knowledge Distillation

Our FAKD-XAI framework incorporates three complementary components in
the loss function to effectively transfer knowledge.

Cross-Entropy Loss: To ensure direct supervision from the ground labels, the
traditional cross-entropy loss is utilized [21]. The formula of Cross-Entropy Loss
is shown in equation 1

LCE = −
N∑
i=1

C∑
c=1

yi,c log
(
pi,c

)
(1)

where yi,c is the ground truth label, pi,c is the student’s predicted probability,
N is the batch size, and C is the number of classes.

Logit-Level Knowledge Distillation: In accordance with Hinton et al. [7],
we employ temperature-scaled softening of the logits to transfer the relationship
information between different classes from teacher to student. The formula of
KD Loss is shown in equation 2

LKD = DKL

(
softmax(zs/T ), softmax(zt/T )

)
· T 2 (2)

where zs and zt denote the logits from the student and teacher networks re-
spectively, T is the temperature parameter controlling the softness of the prob-
ability distribution, and DKL represents the Kullback–Leibler divergence.

Higher temperature values smooth the probability distribution, emphasizing
the relationships between different classes rather than just the correct class. We
set T = 3.0 based on empirical evaluation.
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Feature Alignment Loss: To capture and transfer the rich intermediate rep-
resentations from the teacher to the student, we introduce a spatial feature
alignment mechanism. Unlike prior approaches that require matching feature
dimensions, we employ a 1×1 convolutional projection layer to adapt the stu-
dent’s feature map dimensions to match those of the teacher. We measure the
discrepancy between these feature maps using mean squared error, as shown in
equation 3

LFA =
∥∥Pθ

(
F s
up

)
− F t

∥∥2
2

(3)

where F s is the student’s feature map, F t is the teacher’s feature map, F s
up

is the student’s feature map upsampled to match the teacher’s spatial dimen-
sions using bilinear interpolation, and Pθ is a learnable projection layer with
parameters θ.

We extract features from the penultimate layer (layer3) of ResNet-50 for
the teacher and from the last feature block (features.16) of MobileNetV3-
Large for the student. This specific selection is based on semantic similarity and
optimization of the knowledge transfer process.

Combined Loss Function: The overall loss function combines the three com-
ponents with weighting factors. The formula of Combined Loss Function is shown
in equation 4

Ltotal = (1− α) · LCE + α · LKD + β · LFA (4)

where α controls the balance between cross-entropy and KD loss, and β deter-
mines the importance of feature alignment loss. We empirically set α = 0.5 and
β = 1.0 to optimize performance.

3.8 Explainable Artificial Intelligence (XAI)

We used Explainable AI (XAI) techniques to improve interpretability and trans-
parency. We employed Local Interpretable Model-agnostic Explanations (LIME)
for its ability to explain any black-box model and its intuitive, superpixel-based
visualizations. While we acknowledge its potential for explanation instability,
its local fidelity provides valuable, case-specific insights into the model’s rea-
soning. By changing the input image (using superpixels) and building a simple,
interpretable model based on these changes, LIME explains predictions locally,
weighted by their proximity to the original instance. This process identifies the
input areas of the superpixels that are most relevant for the decision making of
the model. We integrated LIME with our PyTorch model and its specific prepro-
cessing procedures using the lime library to create a custom prediction function
(predict_fn_lime).

To facilitate visualization, we produced explanations for a varied collection of
test images, emphasizing the superpixels that contribute positively (supporting
evidence for the predicted class) and negatively (contradicting evidence) using
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color-coded boundaries superimposed on the original image. This qualitative ex-
amination ascertains whether the model emphasizes clinically pertinent image
aspects, thus fostering confidence in its predictions. We configured LIME with
num_samples=1000 perturbations and aimed to identify the top three contribut-
ing features for each explanation.

4 Results and Discussion

This section describes the experimental setup, evaluation metrics, and thorough
result analysis we got from our proposed framework. We contrast its perfor-
mance with the baseline student model and many state-of-the-art techniques.
We also applied XAI methods to interpret the predictions of the model and for
transparency.

4.1 Environment Setup

Experiments were run on the Kaggle platform utilizing cloud computing re-
sources optimized for deep learning applications. The environment consisted of
an Intel Xeon CPU with 2 cores and a system RAM of 29 GB. For GPU accel-
eration, an NVIDIA Tesla P100 was used, equipped with 16 GB of VRAM.

4.2 Hyperparameter Tuning

The student network’s training and the feature alignment projection layer were
guided by a set of hyperparameters that were carefully chosen, as shown in
Table 1. We employed the AdamW optimizer [22], well known for its efficient
regularization using decoupled weight decay. The learning rate was controlled
by a cosine annealing schedule [23] with a maximum of 15 epochs to promote
convergence. The training used a batch size of 32 and was enhanced by Automatic
Mixed Precision (AMP) with gradient scaling to optimize computing resources
and maintain numerical stability.

To mitigate overfitting, in addition to optimizer-level weight decay and data
augmentation, we employed early stopping based on validation accuracy, stop-
ping training if no improvement was detected for five successive epochs. The
model checkpoint with the best validation accuracy was preserved for final test-
ing. Key parameters influencing the knowledge distillation loss, including the
temperature T and loss weighting factors α and β, were established by empiri-
cal tuning to equilibrate learning from ground truth, teacher logits, and feature
alignment. The settings of the teacher network were maintained constant during
this operation.

4.3 Experimental Results

Training Behavior Analysis: Figure 2 shows the training and validation per-
formance curves for the proposed FAKD-XAI framework. The left panel depicts
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Table 1. Key Model Hyperparameters

Hyperparameter Value
Optimizer AdamW
Initial Learning Rate 1× 10−4

Weight Decay 1× 10−5

Learning Rate Schedule Cosine Annealing
Batch Size 32

Distillation Parameters
Temperature (T ) 3.0
KD Loss Weight (α) 0.5
Feature Loss Weight (β) 1.0

the loss curves of the training and validation, and the right panel shows the
accuracy curves of the training and validation throughout 15 epochs. A con-
sistent decline in both training and validation losses indicates efficient learning
and convergence. Likewise, the training and validation accuracy rise slowly and
plateau. This indicates that the model generalizes well to the unseen validation
data without notable overfitting. The dashed vertical line marks Epoch 10, where
the saved model checkpoint utilized for the next evaluation was created with the
highest validation accuracy. The entire training process was completed in 6.16
minutes. Each epoch demonstrated high efficiency, taking an average of 24.6
seconds to complete.

Fig. 2. Training and validation performance curves for the FAKD-XAI framework.

Quantitative Evaluation of FAKD-XAI: The performance of the best FAKD-
XAI model on the independent test set was evaluated using the standard evalu-
ation metrics. The overall classification report is provided in Table 2.

In the test set, the proposed FAKD-XAI model obtained an exceptional to-
tal accuracy of 99.47%. The precision, recall, and F1-scores for every class are
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Class Accuracy (%) Precision (%) Recall (%) F1-Score (%)
glioma 99.00 100.00 99.00 99.50
meningioma 99.02 98.70 99.02 98.86
notumor 100.00 99.51 100.00 99.75
pituitary 99.67 99.67 99.67 99.67
macro avg 99.42 99.47 99.42 99.44
weighted avg 99.47 99.47 99.42 99.47

Table 2. Classification performance metrics by class for proposed FAKD-XAI frame-
work.

extraordinarily high, mostly above 0.99, suggesting strong performance across
all tumor types and the ’notumor’ class.

Further visualizing the performance of the model, the confusion matrix in
Figure 3 shows the accuracy for each class. The strong diagonal entries confirm
the great accuracy for each class. Misclassifications are few; only three glioma
cases were misclassified as meningioma, and one meningioma case was misclas-
sified as pituitary. The model accurately identified every "notumor" instance.

Fig. 3. Confusion matrix for the FAKD-XAI framework on the test set.

Comparison with State-of-the-Art (SOTA): We assess the efficacy of our
proposed FAKD-XAI model against recent SOTA techniques. Table 3 contrasts
our results with conventional CNNs and other knowledge distillation (KD) meth-
ods on comparable brain tumor MRI datasets.

Our baseline student model, MobileNetV3-Large, already achieves a compet-
itive accuracy of 99.08%, outperforming larger models like ResNet152 [24]. This
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Method Dataset Accuracy (%)
Brain Tumor Classification

ResNet152 [24] Brain Tumor MRI Dataset 98.50
PDCNN [25] Brain Tumor MRI Dataset 98.12
LCDEiT [26] Figshare MRI Dataset 98.11
MobileNetV3 Large (Ours) Brain Tumor MRI Dataset 99.08

Classification with Knowledge Distillation
FedBrain-Distill [14] Figshare MRI Dataset 94.38
KD (CNN-ViT) [27] Brain Tumor MRI Dataset 97.00
DenseNet20+ResNet152V2 [28] Brain Tumor MRI Dataset 98.01
FAKD-XAI (Ours) Brain Tumor MRI Dataset 99.47

Table 3. Comparison of Brain Tumor Classification Models and their Accuracy

high baseline is attributed to the powerful pre-trained features of MobileNetV3
and the relatively clean, well-defined nature of the Brain Tumor MRI dataset
used.

The primary reason for FAKD-XAI’s exceptional 99.47% accuracy lies in
our hybrid distillation strategy. Unlike traditional KD methods that only
match output logits (e.g., [27] achieving 97.00%), FAKD-XAI incorporates an
intermediate feature-level distillation. By forcing the student model’s in-
termediate representations to mimic those of the powerful ResNet-50 teacher,
we transfer rich, hierarchical feature knowledge that is crucial for distinguishing
subtle pathological patterns in medical images. Our feature alignment module,
with its 1x1 convolution, effectively bridges the architectural gap between the
teacher and student, enabling this deeper knowledge transfer. This is a signif-
icant advantage over simpler KD approaches. As seen in Table 3, our method
surpasses other recent distillation techniques, including the DenseNet-ResNet
combination [28] which reached 98.01%, demonstrating the superiority of our
targeted feature-aligned approach for this task.

Qualitative Analysis using LIME: We applied LIME (Local Interpretable
Model-agnostic Explanations) to explain the decision-making process of our
FAKD-XAI model. By use of a simplified model on input picture perturba-
tions, LIME finds superpixels either positively or negatively influencing fore-
casts. Displayed in every visualisation are four panels: the original labelled MRI,
the top positive contributors (green), the top negative contributors (red), and
a combined overlay. Green areas in Figure 4 (Pituitary) correctly depict the
center-lower brain location of the tumour. Green sections in Figure 5 (Notumor)
emphasise normal brain architecture; red areas draw attention to perhaps un-
clear parts. Figure 6 (Meningioma) shows green superpixels marking the position
of the peripheral tumour along the head. Green regions in Figure 7 (Glioma) help
to highlight the particular form of the tumour inside the brain parenchyma. By
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matching actual tumour sites or normal tissue characteristics, our model’s focus
on clinically relevant variables increases prediction accuracy.

Fig. 4. LIME explanation for Pituitary tumor

Fig. 5. LIME explanation for Notumor

Fig. 6. LIME explanation for Meningioma

Fig. 7. LIME explanation for Glioma



FAKD-XAI 13

4.4 Discussion

Our experimental findings show how well the FAKD-XAI framework performs
classifying multi-class brain tumors from MRI scans. With 99.47% accuracy
on the test dataset, the framework outperformed a number of contemporary
SOTA techniques in Table 3. The lightweight MobileNetV3 Large student re-
ceives improved feature representation qualities by transferring information from
the larger ResNet50 teacher model. Our hybrid method uses logit-level KD (by
KL divergence) and feature-level KD (using MSE on projected, aligned fea-
ture maps). While feature KD compels comparable intermediate representations,
hence producing a stronger student model, logit KD motivates the student to
imitate the output probabilities of the teacher.

Qualitative study using LIME offers crucial understanding of the decision-
making processes of models. Figures 4-7 illustrate the model’s consistent iden-
tification of salient image regions associated with specific tumor types or char-
acteristics of healthy tissue. The observed excellent performance metrics and
the confidence in the forecasts are supported by the relationship between model
attention and clinically important variables.

In similar tasks, FAKD-XAI shows better performance than traditional CNN
methods and modern KD approaches, highlighting the effectiveness of the hybrid
distillation approach for medical imaging uses. MobileNetV3 Large’s achieve-
ment of state-of-the-art outcomes is remarkable given its efficient design, which
enables possible use in resource-limited clinical environments.

Though promising, our study has limitations. Performance was assessed on
a single dataset, warranting further validation. Additionally, our use of LIME,
while providing intuitive local explanations, is a recognized limitation due to its
potential instability. Future work should incorporate a comparative analysis with
other XAI methods, such as Grad-CAM for visualizing feature importance and
SHAP for more theoretically grounded explanations, to provide a more robust
and comprehensive understanding of model behavior. The study also did not
address potential dataset biases.

Future works include validation across several multi-institutional datasets,
investigation of alternative architecture combinations, improvement of knowl-
edge distillation loss components, research of complementary explainable AI
techniques, and execution of clinical validation studies to evaluate real-world
applications.

5 Conclusion

In this work, we presented FAKD-XAI, a novel knowledge distillation frame-
work to improve the classification of brain tumors from MRI scans. Using a
computationally efficient MobileNetV3-Large student model, our method suc-
cessfully transfers knowledge from a complex ResNet-50 teacher network to
MobileNetV3-Large, a lighter model. The fundamental innovation is the fusion of
an adaptive feature alignment mechanism with traditional logit-level distillation,
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which captures and transfers rich intermediate representations essential for iden-
tifying subtle pathological patterns. Our proposed approach set a new standard
in the field by attaining a classification accuracy of 99.47% through rigorous
testing on the Brain Tumor MRI dataset. This performance significantly outper-
forms that of the baseline student model and other modern methodologies. The
inclusion of LIME provides useful visual explanations, thereby improving model
transparency and building confidence, which is a crucial element for clinical adop-
tion. The FAKD-XAI framework efficiently balances model efficiency (5.25 ms
inference time per image) with high accuracy (99.47%), proving its potential as a
real-time diagnostic solution in resource-constrained medical settings. Future re-
search will seek to confirm the framework’s durability across multi-institutional
datasets and to investigate complementary XAI technologies, such as Grad-CAM
and SHAP, to build a more holistic and reliable interpretability framework.
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