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Abstract—Pneumonia is a considerable worldwide health chal-
lenge, demanding the advancement of swift and precise diagnostic
techniques. Although deep learning models have demonstrated
potential, their clinical adoption is often hindered by a lack of
interpretability and an inability to focus on diagnostically salient
regions. To overcome these limitations, this paper introduces
PneumoniaXAttnNet, a novel deep learning framework that
integrates a custom channel-spatial attention module with a
fine-tuned Xception backbone to enhance feature representation
by concentrating on critical areas within radiographic images.
Our model outperforms prior benchmarks with an accuracy
of 97.35% and an Area Under the Curve (AUC) of 0.9927 on
the publicly available Chest X-Ray Images (Pneumonia) dataset.
To visually confirm that the model’s predictions are based on
clinically significant pathological traits, including regions of lung
opacity, we used a suite of explainable AI (XAI) techniques,
specifically Grad-CAM, Simple Gradients, and SmoothGrad,
in addition to quantitative measurements. By combining high
diagnostic accuracy with transparent, verifiable decision-making,
PneumoniaXAttnNet represents a significant step towards devel-
oping a robust and trustworthy computer-aided diagnostic tool
for clinical practice.

Index Terms—Pneumonia Classification, Deep Learning, Con-
volutional Neural Networks (CNN), Attention Mechanism, Ex-
plainable Artificial Intelligence (XAI)

I. INTRODUCTION

Pneumonia continues to be a major global health concern,
leading to a high annual rate of illness and mortality. This
respiratory infection, which is among the most prevalent, can

cause serious problems, especially in high-risk groups includ-
ing young children and people with weakened immune sys-
tems [1]. The development of medical imaging technologies
has significantly advanced disease diagnosis, with tools like
chest X-rays and CT scans becoming essential for identifying
conditions like pneumonia [2].

The healthcare sector holds a wealth of pneumonia-related
data that, when effectively analyzed, can provide valuable
insights for early diagnosis and treatment. Various computer-
aided diagnostic (CAD) systems now assist radiologists in
identifying pneumonia, while data mining methods help in
processing complex medical data to uncover meaningful di-
agnostic patterns.

In recent years, deep learning, a particular domain of
machine learning, has gained notable attention for its ca-
pacity to recognize complex patterns from extensive datasets
through multi-layered neural networks. This method enables
the construction of models that capture high-level data features
and has shown remarkable success in radiology by surpassing
the performance of traditional machine learning techniques in
certain applications. In many cases, deep learning models rival
or exceed the diagnostic capabilities of human experts [3].
Beyond healthcare, deep learning is widely applied in domains
such as speech recognition, image processing, language un-
derstanding, graph analytics, and smart transportation systems
[4].

The power of deep learning lies in its ability to automati-
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cally extract intricate features, deliver highly accurate results
which often exceeding human-level performance in medical
imaging that support end-to-end learning with little human
intervention, and efficiently manage massive datasets, making
it ideal for modern big data challenges. Recently, the field has
experienced rapid progress, moving from theoretical innova-
tion to real-world deployment. New model architectures and
optimization strategies like VGGNet, ResNet and Transformer
have significantly improved tasks in both image classification
and natural language processing [5].

However, many current deep learning models used for
pneumonia diagnosis struggle to effectively focus on the most
critical regions of medical images. Additionally, their decision-
making procedures are sometimes opaque, which makes it
challenging for clinicians to completely trust or understand the
outcomes. Because healthcare professionals need models that
are both accurate and explicable, this restriction has hampered
clinical acceptance.

We address these issues by introducing a new deep learning
framework for classifying pneumonia that is based on a
modified Xception architecture and enhanced by a specially
designed Channel-Spatial Attention (CSA) module. This at-
tention mechanism allows the model to identify both “what”
and “where” to focus within an image, leading to improved
feature learning and classification accuracy, while offering
better interpretability for clinical use.

This research work’s main contributions are:
• We introduce PneumoniaXAttnNet, a new attention-

driven model that integrates a Channel-Spatial Attention
module into a fine-tuned Xception backbone [6]. This
strategy optimizes the model’s attention to critical regions
in chest X-rays and improves classification accuracy
relative to traditional CNN models.

• We utilize explainable AI (XAI) techniques, such as
Grad-CAM [7], Simple Gradients, and SmoothGrad, to
elucidate and comprehend the model’s decisions. These
strategies emphasize the particular image regions that
affect the diagnosis, enhancing clinical confidence and
rendering the system more applicable for practical med-
ical use.

II. RELATED WORK

In recent years, there has been a significant rise in the
utilization of deep learning in healthcare, especially for the
analysis and classification of medical imaging data, including
oncological pathology slides, diabetic retinopathy scans, pneu-
monia chest X-rays, tuberculosis images, and microbial spec-
imens. Joint endeavors among pathologists, radiologists, and
computer scientists have resulted in the creation of computer-
assisted diagnosis tools for ailments such as pneumonia,
cancer, and tuberculosis [8].

Numerous deep learning methodologies have been presented
for pneumonia diagnosis utilizing chest X-ray and CT imaging.
Gu and Lee [9] introduced a transfer learning framework
leveraging general-purpose pretrained models such as ResNet,
DenseNet, and MobileNet for pneumonia classification. To

adapt grayscale X-rays to RGB-based models, they replicated
the single-channel images across three channels. DenseNet161
achieved 93.6% accuracy, demonstrating that transfer learning
from real-world images can effectively overcome limitations
of small medical datasets while reducing training time and
computational cost.

Similarly, Akbar et al. [10] evaluated multiple neural net-
work models, including custom CNNs and pretrained archi-
tectures such as MobileNet, DenseNet, VGG16/19, Incep-
tionV3, ResNet, NASNetMobile, and EfficientNet, utilizing a
publicly accessible collection of chest X-ray pictures. They
applied data augmentation techniques (rotation, zoom, shift),
resizing to 224 × 224 pixels, and normalization. Employing
the Adam optimizer, binary cross-entropy loss, and dropout,
EfficientNet-B0 attained superior performance with 94.13%
accuracy, 93.50% precision, 92.99% recall, and 93.14% F1-
score, demonstrating the efficacy of advanced pretrained CNNs
for automated pneumonia diagnosis.

Widiarto et al. [11] proposed an ensemble CNN framework
combining InceptionResNetV2 and MobileNetV2, utilized a
dataset of around 5,800 chest X-ray pictures. The ensemble
model achieved 92.47% accuracy, surpassing the individ-
ual models (89.58% for InceptionResNetV2 and 90.38% for
MobileNetV2), demonstrating that ensemble strategies can
effectively leverage the complementary strengths of multiple
architectures.

Shannar el al. [12] introduced a deep learning-based pneu-
monia classification system utilizing the VGG19 architecture
on Kaggle dataset chest X-ray pictures. The study addressed
both unbalanced and balanced datasets, where undersam-
pling was applied to mitigate class imbalance. The pretrained
VGG19 model was fine-tuned using Adam and stochastic
gradient descent optimizers after the system integrated pre-
processing operations like resizing, normalization, and dataset
balance. Experiments revealed that the model improved pneu-
monia classification performance with VGG19 with undersam-
pling, achieving 86% accuracy on the imbalanced dataset and
94% accuracy on the balanced dataset.

While these studies demonstrate the promise of deep learn-
ing in pneumonia classification, they also reveal notable gaps.
Many models are trained and tested on relatively small or
imbalanced datasets, limiting generalizability. In addition, few
approaches integrate explainability mechanisms, which are
essential for clinical adoption. Moreover, real-time applica-
bility and external validation on diverse populations remain
underexplored, highlighting the need for robust and deployable
solutions.

III. METHODOLOGY

Our approach to pneumonia classification is based on the
fine-tuned convolutional neural network (CNN) architecture,
enhanced with an integrated attention mechanism to improve
localization of salient pathological features. This approach,
which we term PneumoniaXAttnNet, is designed to accurately
classify chest radiographs while providing insights into its
decision-making process. The general structure is depicted in
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Fig. 1. This section details the dataset preparation, the specific
components of our model architecture, and the explainability
techniques employed.

A. Dataset and Preprocessing

We used the publicly available Chest X-Ray (Pneumonia)
data set, which included 5,863 anterior-posterior chest ra-
diographs from children between the ages of one and five
years [13]. The dataset is categorized into two groups: Normal
and Pneumonia. The photos were first gathered as part of stan-
dard clinical care and underwent quality control assessment;
expert doctors graded the diagnoses to verify that the labels
were correct [13].

For robust and reproducible evaluation, we deviated from
the original dataset splits. All images were first combined into
a single set. We used stratified partitioning, allocating 20% of
the data for a reserved test set, 10% for validation, and 70%
for training. This procedure ensures there is no data leakage
from the original test set into our training or validation sets.

To conform to the input dimensions of our network, all
photos had their sizes reduced to 224×224 pixels. To enhance
model generalization, real-time data was included to the train-
ing set. The augmentations comprised random rotations of up
to 20 degrees, random horizontal flips, and color jittering with
brightness and contrast factors of 0.3. For the validation and
test sets, only resizing and normalization were applied. All
input photos were normalized using the mean and standard
deviation obtained from the ImageNet dataset, in accordance
with conventional procedures for models utilizing pre-trained
weights.

B. Model Architecture: PneumoniaXAttnNet

Our model architecture, PneumoniaXAttnNet, comprises of
a pre-trained feature extractor, a novel attention module, and
a custom classification head, which are detailed below.

1) Fine-Tuned Xception Backbone: The foundation of our
model is the Xception architecture [6], which we use as a
feature extractor. Weights pre-trained on the ImageNet dataset
were used to initialize the network to make use of the rich,
general-purpose features learned from a large-scale image
corpus. We utilized a selective fine-tuning method to adjust
the model for the particular area of medical imaging. The
weights of the initial and intermediate layers were fixed,
maintaining their capacity to identify fundamental patterns
such as edges and textures. We unfroze only the final two
separable convolution blocks (block10 and block11) and
the initial stem layers. This enables the model to modify
its advanced feature representations to the nuanced patterns
indicative of pneumonia on radiographs. The original fully-
connected classification layer was removed to accommodate
our custom modules.

2) Channel-Spatial Attention Module: To improve the
model’s capacity to concentrate on diagnostically important
regions, we incorporated a tailored attention mechanism po-
sitioned directly after the Xception backbone. Drawing in-
spiration from the Convolutional Block Attention Module

(CBAM), this component refines the feature maps by applying
attention sequentially across two distinct dimensions. The
channel attention component first determines what is important
by using global average pooling and a small multi-layer
perceptron (MLP) to compute channel-wise weights. These
weights recalibrate the feature map to emphasize informative
channels. Subsequently, the spatial attention unit identifies
where the model should concentrate by employing a 7×7
convolutional layer to produce a two-dimensional spatial at-
tention map. This map is applied to the feature representation,
attenuating irrelevant background information while enhancing
the prominent pathological regions.

3) Classification Head: The attended feature maps are re-
duced to a fixed-size feature vector via global average pooling.
This vector is then fed into a custom classification head
designed for robust prediction. The head is composed of two
dense blocks, each containing a linear layer, a BatchNorm1d
layer for training stability, a Swish-like activation function
(SiLU), and a Dropout layer (with rates of 0.5 and 0.3,
respectively) for regularization. The final linear layer outputs
the raw logits for the binary classification.

C. Loss Function

For training, the network was optimized using the standard
cross-entropy loss, which is widely adopted for classification
problems. Considering a batch of M samples, the loss function
J can be expressed as:

J = − 1

M

M∑
j=1

K∑
k=1

tj,k log(p̂j,k) (1)

In this formulation, K represents the total number of cate-
gories (2 in our case), tj,k is a binary indicator (equal to 1
if instance j belongs to class k, and 0 otherwise), and p̂j,k
denotes the predicted probability, obtained through the softmax
function applied to the network outputs, that instance j is
assigned to class k. The model weights are iteratively updated
by minimizing this loss with the AdamW optimizer.

D. Explainable AI for Model Interpretation

In a clinical context, the transparency of an automated sys-
tem is paramount. To interpret our model’s predictions, we em-
ployed several gradient-based explainability techniques to gen-
erate saliency maps. We predominantly employed Gradient-
weighted Class Activation Mapping (Grad-CAM) [7], which
generates a class-discriminative localization map by examining
the gradients that propagate into the final convolutional layer.
To conduct a more detailed study, we calculated saliency maps
utilizing basic input gradients, a fundamental technique that
directly depicts the gradient of the class score in respect to
the input pixels. To mitigate the noise inherent in these raw
gradient maps, we applied SmoothGrad, which averages the
gradients over multiple noise-perturbed copies of the input
image. The resulting visualizations allow for a qualitative
assessment of whether the model identifies clinically relevant
indicators of pneumonia, such as lobar consolidations, rather
than learning from confounding artifacts.
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Fig. 1: The Proposed PneumoniaXAttnNet Framework

IV. RESULTS AND DISCUSSION

This section provides a thorough assessment of our pro-
posed PneumoniaXAttnNet. We detail the experimental setup,
provide an extensive quantitative research of the model’s ef-
fectiveness on the reserved test set, analyze our results against
previous methods, and conduct a qualitative analysis using the
explainability techniques described in our methodology.

A. Experimental Setup

The PyTorch deep learning framework was used to imple-
ment it on a computer with an NVIDIA Tesla P100 GPU.
Training lasted up to 20 epochs, and the AdamW optimizer
was set up with a weight decay factor of 1 × 10−3 and
a starting learning rate of 1 × 10−4. During training, the
learning rate was modified using a cosine annealing scheduler
to further enhance convergence. To mitigate overfitting and
select the best-performing model, we applied a mechanism
called early stopping with 5 epochs of patience, monitoring
the validation loss. The total training time to convergence
was approximately 10.7 minutes (644 seconds). Subsequent
inference on the entire held-out test set, which comprised
1,172 images, was completed in 12.3 seconds, highlighting
the model’s computational efficiency.

B. Quantitative Performance Analysis

We assessed the model’s performance utilizing a range
of conventional measures, emphasizing its training behavior,
classification accuracy on the test set, and discriminative
capability.

1) Training and Validation Dynamics: Fig. 2 presents the
learning curves obtained across the training epochs. The
training loss decreases steadily in a smooth manner, while
the validation loss reflects a similar pattern, suggesting that
the model achieved good generalization rather than simply
memorizing the training set. Similarly, the validation and train-
ing accuracy curves rise in tandem, both achieving a plateau
above 97%. The close proximity of the validation and training
curves suggests that our data augmentation and regularization
strategies were effective in preventing significant overfitting.

Fig. 2: Model training and validation curves. The close align-
ment between accuracy (left) and loss (right) curves indicates
stable convergence and effective generalization.

2) Test Set Performance Metrics: Table I provides the
classification report that summarizes the model’s results on
the independent test set. The proposed PneumoniaXAttnNet
achieved an impressive overall accuracy of 97.35%. Specif-
ically, for the clinically significant Pneumonia category, the
model reached a precision of 98.00%, a recall of 98.30%,
and an F1-score of 98.20%. The high recall is particularly
important in a diagnostic setting, as it signifies the model’s
capacity for accurate identification the vast majority of true
pneumonia cases, thereby minimizing false negatives. The
high precision means that the model is very likely to be
accurate when it predicts pneumonia.

TABLE I: Performance metrics of PneumoniaXAttnNet on the
held-out test set.

Class Accuracy (%) Precision (%) Recall (%) F1-score (%)
NORMAL 97.35 95.71 94.83 95.27

PNEUMONIA 97.35 97.99 98.34 98.16
Macro Avg - 96.85 96.59 96.72

Weighted Avg 97.35 97.35 97.35 97.35

3) Error Analysis via Confusion Matrix: A more detailed
view of the classification performance is presented in the
confusion matrix shown in Fig. 3. Among the 843 actual pneu-
monia cases in the test set, the model correctly predicted 829
as positive (True Positives), while 14 cases were incorrectly
labeled as normal (False Negatives). For the 329 true normal
instances, 312 were accurately classified (True Negatives),
and only 17 were mistakenly identified as pneumonia (False
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Positives). This low number of misclassifications, particularly
the small number of false negatives, further validates the
model’s reliability for this diagnostic task.

Fig. 3: Confusion matrix of the proposed model on the test
set, detailing correct and incorrect predictions for each class.

4) Discriminative Power Analysis: To assess the model’s
ability to distinguish between the two categories in all possible
classification thresholds, we constructed the Receiver Operat-
ing Characteristic (ROC) curve, illustrated in Fig. 4. The curve
shows a low false positive rate and a high true positive rate as
it increases dramatically toward the top-left corner. The com-
puted Area Under the Curve (AUC) was an impressive 0.9927,
which is extremely near to the optimal value of 1.0. This high
AUC value demonstrates the remarkable discriminative power
of the model.

Fig. 4: The ROC curve for the test set shows an AUC of
0.9927, highlighting the model’s strong discrimination be-
tween classes.

C. Ablation Study

To determine the impact of the suggested Channel-Spatial
Attention (CSA) module, we performed an ablation study. We
compared the performance of our full PneumoniaXAttnNet
model against a baseline counterpart, which uses the identical
fine-tuned Xception backbone and classification head but omits

the attention module. Both models were trained and evaluated
under the same experimental conditions to ensure a direct and
fair comparison.

The results, summarized in Table II, confirm the significant
contribution of the attention mechanism. While the baseline
XceptionNet performs well, the introduction of the CSA
module boosts performance across all key metrics. Notably,
accuracy improves from 95.65% to 97.35%, and the Macro
F1-Score rises from 94.48% to 96.72%. This enhancement
indicates that by directing the model’s focus toward the most
important features, the attention module contributes to more
reliable and accurate classification, supporting its integration
into our architecture.

TABLE II: Ablation study results comparing the baseline
Xception against the proposed PneumoniaXAttnNet.

Model Acc. (%) Prec. (%) Rec. (%) F1 (%)
Xception 95.65 95.67 93.45 94.48
PneumoniaXAttnNet 97.35 96.85 96.59 96.72

D. Qualitative Analysis and Model Interpretability

Fig. 5 provides visual explanations for the model’s predictions
on representative test images using Grad-CAM [7], simple
gradients, and SmoothGrad. For the Pneumonia case (bottom
row), the Grad-CAM visualization correctly highlights the
region of lung opacity in the upper right lobe, a critical clinical
marker. This indicates that the model is effectively identifying
clinically relevant features. For the correctly classified Normal
case (top row), the model’s attention is more diffuse and
centered on expected anatomical structures like the cardiac sil-
houette and hilum, without focusing on any specific anomalous
region. These visualizations provide strong evidence that the
model’s decision-making process is grounded in meaningful
visual patterns.

Fig. 5: The figure shows the original image alongside heatmaps
generated by Grad-CAM, Simple Gradients, and SmoothGrad
for a correctly classified ’Normal’ case (top row) and a
’Pneumonia’ case (bottom row).

E. Discussion

The experimental findings indicate that the proposed Pneu-
moniaXAttnNet serves as a highly effective approach for
detecting pneumonia in pediatric chest X-rays. In this section,

5



we analyze the results, explore their clinical implications, and
highlight the study’s limitations along with potential directions
for future research.

The quantitative success, particularly the high recall (98.3%)
and AUC (0.9927), is significant. We attribute this strong
performance primarily to our architectural design. By using
a pre-trained Xception network, we leveraged a robust set
of features learned from a massive dataset. However, the key
innovation is the subsequent channel-spatial attention module.
This module forces the model to explicitly learn and weight the
importance of different feature channels (‘what’ to look for)
and spatial locations (‘where’ to look), effectively guiding its
focus towards diagnostically relevant regions and away from
confounding background information. This targeted feature
refinement is likely what gives our model an edge over more
generic CNN architectures.

From a clinical perspective, the implications of this work are
promising. The model’s high accuracy and, more importantly,
its high recall for pneumonia, suggest its potential as a
reliable second reader or a screening tool for radiologists,
especially in high-workload environments. Its rapid inference
time makes it practical for real-time applications. Furthermore,
the interpretability provided by the XAI visualizations is
crucial for building clinical trust. Clinicians can view not
only the model’s prediction but also an accompanying visual
explanation, enabling them to confirm whether the model’s
attention corresponds with their own clinical assessment.

Despite these encouraging findings, we recognize certain
limitations. Firstly, the model was trained and tested on a
single, though sizeable, publicly available dataset of pediatric
patients. Its performance on adult patients or on images from
different medical centers with different imaging equipment
remains to be validated. Second, the current model performs
a binary classification. The model is unable to differentiate
among various types of pneumonia (such as bacterial versus
viral), which represents a clinically significant distinction.

Future work will focus on three primary directions. The first
is to assess the model’s generalizability using external, multi-
center datasets that also include adult patients. The second
is to expand the framework to a multi-class classification
task capable of distinguishing between bacterial and viral
pneumonia. Finally, we plan to investigate combining our
image-based model with additional clinical information from
electronic health records (EHR) to develop a comprehensive,
multi-modal diagnostic system.

V. CONCLUSION

This study introduces PneumoniaXAttnNet, a novel deep
learning framework designed to detect pneumonia in pediatric
chest X-ray images. By integrating a channel-spatial attention
module with a fine-tuned Xception backbone, our model learns
to focus on the most salient diagnostic regions, significantly
improving classification performance. Evaluation on a large
public dataset demonstrates the effectiveness of our approach,
achieving a high accuracy of 97.35% and an outstanding AUC
of 0.9927. Crucially, we paired this high accuracy with robust

interpretability. Through the use of XAI techniques like Grad-
CAM, we confirmed that the model’s predictions rely on
clinically meaningful features, such as areas of lung opacity,
thereby fostering the trust necessary for clinical adoption. The
model’s computational efficiency further supports its potential
for real-world deployment as a reliable diagnostic aid for
radiologists. The primary limitation of this study is its reliance
on a single pediatric dataset. Consequently, future efforts
will aim to evaluate the model on diverse external datasets,
including adult populations, and to extend its capability to
distinguish between bacterial and viral pneumonia.
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